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Finding the bare band: Electron coupling to two phonon modes in potassium-doped
graphene on Ir(111)
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Institut za fiziku, Bijenička 46, HR-10000 Zagreb, Croatia

(Received 1 January 2012; revised manuscript received 5 March 2012; published 24 April 2012)

We analyze renormalization of the π∗ band of n-doped epitaxial graphene on Ir(111) induced by electron-
phonon coupling. Our procedure of extracting the bare band relies on recursive self-consistent refining of
the functional form of the bare band until the convergence. We demonstrate that the components of the self-
energy, as well as the spectral intensity obtained from angle-resolved photoelectron spectroscopy, show that the
renormalization is due to the coupling to two distinct phonon excitations. From the velocity renormalization and
an increase of the imaginary part of the self-energy we find the electron-phonon coupling constant to be ∼0.2,
which is in fair agreement with a previous study of the same system, despite the notable difference in the width
of spectroscopic curves. Our experimental results also suggest that potassium intercalated between graphene and
Ir(111) does not introduce any additional increase of the quasiparticle scattering rate.
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I. INTRODUCTION

Graphene is a fascinating two-dimensional material with
linear electronic bands and linear dependence of the density
of states around the Fermi level.1 By field-effect or chemical
doping (either n or p) Fermi level can be tuned to change
graphene from a zero-gap semiconductor to a metal.2–4

Intrinsic and doped graphene prove to be an interesting
platform to study different aspects of many-body interac-
tions in two-dimensional systems, either experimentally5–7 or
theoretically.8–10 A particular accent is put on the electron-
phonon coupling (EPC) in doped graphene.11–13

Adsorption and/or intercalation of alkali atoms in epitaxial
graphenes can lead to a whole range of n dopings, including
an extreme case where graphene’s van Hove point is brought
to the Fermi level.14 Studies on KC8 (Grüneis et al.11) and
CaC6 (Valla et al.12) report strong EPC anisotropy, with
significantly smaller EPC constant λ along the K-�, compared
to the K-M direction. Despite the fact that these experiments
were performed by intercalation of graphite, it had been
demonstrated that the intercalation separates single layers of
graphite in such a way that it shows all signatures of graphene.
Some others have reported a smaller value of λ,15–17 and no
anisotropy in the EPC.15 Recent results also suggest that EPC
progressively increases with doping.18

Determination of the renormalization effects in n-doped
π∗ band due to the EPC is complicated, in particular along
the K-M direction, because of the nonlinear behavior of
the band close to the Fermi level.19 A simple procedure
to establish the strength of electron-phonon coupling by a
comparison of the quasiparticle velocity at the Fermi level
and the velocity well beyond the phonon energy scale is
shown to be compromised by a significant change of the
quasiparticle velocity due to the nonlinearity of the π∗ band.19

Some other procedures rely on the bare-band dispersion.20 The
choice of the bare band may, however, influence an accurate
determination of the magnitude and shape of the self-energy.21

A self-consistent GW approximation was applied in ab initio
density functional theory calculation to model graphene’s
bare band that includes all electron-electron correlations.11

In order to avoid any arbitrariness, determination of the

bare-band dispersion from the experimental data is desirable.
Different approaches based on self-consistent procedures have
been developed to determine the bare-band, self-energy, and,
ultimately, electron-phonon coupling strength.15,21,22

A self-consistent method has already been applied to the
photoemission data of potassium-doped graphene on Ir(111).15

Several aspects of the low-energy quasiparticle dynamics
were addressed: renormalization of the π∗ band close to the
Fermi level due to the coupling to phonons; phonon spectrum
associated with the renormalization; the width of spectral lines
in connection with the electron scattering rate. A model with
a spectrum of five evenly spaced phonons participating in the
coupling to graphene’s π∗ band was used in the self-energy
analysis. The EPC constant was found relatively small (0.28)
and isotropic around K. Rather broad peaks were interpreted in
terms of an increased electron scattering rate caused by the loss
of translation symmetry induced by the incommensurability
of the system graphene/Ir(111).15 An angle-resolved photo-
electron spectroscopy (ARPES) study on another metallic
system—graphene on a copper foil—questions all previous
findings, proposing an order of magnitude smaller electron-
phonon coupling strength.17

In this paper we present results of an ARPES study of
highly ordered graphene on Ir(111)23,24 intercalated25 with
potassium. We use maxima of momentum distribution curves
(MDC) and energy distribution curves (EDC) to determine
the exact dispersion of the π∗ band along the K-M direction.
Peak positions and widths of MDCs are used in a self-
consistent method to reconstruct the bare band Eb and the
corresponding Im�(E) and Re�(E). Both show, consistent
with the spectral intensity A(E), that the renormalization is
due to the coupling to two distinct phonon excitations. From
the velocity renormalization and an increase of Im�(E) with
energy electron-phonon coupling constant is determined.

II. METHOD

Photoemission spectra offer a wealth of information
about many-body interactions in solids, in particular two-
dimensional ones. The single-particle spectral function, that
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the intensities in the photoemission spectra are proportional
to, is given by

A(k,E) = 1

π

Im�(E)

[E − Eb(k) − Re�(E)]2 + [Im�(E)]2
. (1)

Here, Eb is the dispersion relation of the bare band, and � =
Re� + i Im� its many-body correction, so-called self-energy.
The latter is usually taken to depend only on energy, as its
momentum dependence is considered weak.22

If a cut at a given energy E = Em (momentum distribution
curve) is made out of a two-dimensional map A(k,E), nearly
Lorentzian line shape is obtained with a maximum at km such
that

Em − Eb(km) − Re�(Em) = 0, (2)

and a half-maximum at km − wLm and km + wRm [wLm +
wRm = 2 wm is then full width at half maximum (FWHM)],
where

Im�(Em) = Eb(km) − Eb(km − wLm), (3)

as elaborated by Kordyuk et al.21,26 Note that these relations
do not rely on any specific dispersion of the bare band Eb(k).

The analysis of all the MDCs usually provides a set of
value quadruplets (Em, km, 2 wm, Am) evenly spaced on Em.
If the line shape of an MDC is not far from Lorentzian, one
has wLm ≈ wRm, and can set them both equal to wm—half
width at half maximum (HWHM). The fact that each of the
quadruplets is supposed to satisfy Eqs. (1), (2), and (3) can
help us determine the functional form of the bare band Eb(k),
and the two components of the self-energy Re�(E), Im�(E)
in the range of momenta and energies covered by the spectrum.

The procedure of extracting Eb, Re�, and Im� from the
experimental data assumes that (i) the components of the self-
energy must, by causality, comply with the Kramers-Kronig
relation over the ±∞ range of energies; (ii) the upper half of
the spectral function not accessible to ARPES (E > EFermi ≡
0) is substituted by supposing particle-hole symmetry; (iii)
the high-energy tails of the three functions are not affected
by a finite energy window for which the ARPES spectrum is
available.21,27

If these criteria are met, the Kramers-Kronig transform of
Im� to Re� (and vice versa)

Re�(E) = 1

π

∫ +∞

−∞

Im�(ξ )

ξ − E
dξ, (4)

if considered as a convolution of two functions, is easily cal-
culated going through the time domain by Fourier transforms
[fast Fourier transform (FFT), in the discrete case]:

[Re�(E)]FFT =
[

1

E

]
FFT

× [Im�(E)]FFT . (5)

In some numerical packages this is already provided as a
discrete Hilbert transform.

The bare band and the components of the self-energy
are usually reconstructed by assuming a polynomial (mostly
linear) form of the bare band, from which Re�(E) is calculated
by both Eq. (2) and a Kramers-Kronig transform of Im�(E).
Usually, not even Eq. (3) is used, but its expansion to the
first order in w, Im�(Em) = h̄vb(Em)wm, where vb(E) is
the bare-band velocity. The two forms of Re�(E) are then

FIG. 1. (Color online) Self-consistent iterative algorithm that
refines the bare band Eb by enforcing the Kramers-Kronig relation
between Im� and Re�.

compared, and the coefficients of the polynomial adjusted until
the difference is minimal.20,21,27,28

In this work we propose a simpler procedure, that avoids
the need for a minimization of a functional, and achieves the
self-consistency in just a few iterations. The procedure also
appears to be more stable with respect to the noise present
in the experimental data, and no denoising27 or smoothing by
fitting to a function15 is needed.

The algorithm, shown in Fig. 1, starts by postulating a form,
linear for example, of the bare band Eb(k). Forcing the function
to pass through the experimentally determined point (kF , EF )
can help in faster convergence. Note that this constraint is
physically sound, as the renormalized and the bare band are
expected to intersect at the Fermi level. In the first step of the
iterative procedure, Im� is calculated by Eq. (3). In the second
step Re� is obtained by a discrete Hilbert transform of Im�.
This is then by Eq. (2) used to refine the bare band, first on a
discrete set of points (step 3), then fitted to a polynomial or a
function at wish (step 4). The iteration ends when there are no
substantial changes in the functions (or parameters) obtained.
Further details on the procedure, the full code, and exemplary
input data are accessible as Supplemental Material in Ref. 29.

Electron-phonon coupling strength can be extracted30 either
from a steplike increase of the imaginary part of the self-
energy, �Im�, as

λ = 2

π

�Im�

h̄ωph
(6)

or from the real part of the self-energy as

λ = − d

dE
Re�(E)|E=EF

. (7)

Although these two equations are strictly valid only at zero
temperature, they are especially good approximations in the
case of graphene, where phonon excitations are high in energy.

Instead of calculating the derivative in Eq. (7) directly,
which is liable to errors due to the noise and scarcity of reliable
data in the very proximity of the Fermi level, one can make use
of Eq. (2), through λ = − d

dEm
[Em − Eb(km)] = E′

b(k)
E′

m(k) − 1, to
get

λ = vb(EF )

vr (EF )
− 1. (8)
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Here, vb (vr ) is the Fermi velocity of the bare (renormalized)
band.

III. EXPERIMENT

The experiments were performed at the APE beamline
at ELETTRA. Iridium single crystal of 99.99% purity and
surface orientation better than 0.1◦ was used. The substrate
was cleaned by several cycles of sputtering with 1.5 keV Ar +
ions at room temperature followed by annealing at 1600 K.
Cleanness and quality of Ir(111) were checked by ARPES
(existence and quality of iridium surface states)31 and low
energy electron diffraction (LEED). The base pressure was
5 × 10−9 Pa.

During the growth of graphene the surface was exposed to
2 langmuir (L, 1 L = 1.3 × 10−4 Pa s) of ethene at 300 K and
subsequently heated to 1470 K. In order to ensure perfectly
oriented graphene and the coverage of the whole surface,
the procedure was repeated up to 12 times, finishing with
simultaneous exposure to ethene and heating.23,32 Potassium
was added at room temperature by evaporation from a getter
source, until a clear 2 × 2 structure emerged in LEED and no
additional doping of graphene bands could be achieved.

ARPES spectra have been collected by a Scienta SES
2002 analyzer. For this experiment we used photon energy of
40.5 eV, in s and p polarization of the field. Typical spot size
on the sample was 50 μm × 100 μm. The energy resolution
of this setup was about 12 meV, and the angular resolution
0.1◦. The azimuths were checked according to the orientation
of spots in LEED and the emergence of the Dirac cone and
replica bands in ARPES for the plain graphene on Ir(111).24

During the measurements the temperature of the sample was
held at 80 K.

IV. RESULTS

Figure 2 shows photoemission spectrum of potassium-
intercalated graphene on Ir(111) around the K point along
the �-K-M direction. The spectrum shows a discernible
asymmetry of the intensity, such that the part of the spectrum of
the π∗ band along K-M (k > 1.7 Å−1) exhibits much stronger
intensity than the part dispersing along K-� (k < 1.7 Å−1).
Notice that iridium surface state at the Fermi level, also present
in the spectrum for graphene/Ir(111),24 is not quenched by the
intercalation of potassium. Potassium doping, however, has a
rather strong effect on the π bands of graphene—shifting the
Dirac point to higher binding energies and renormalizing the
band dispersion just below the Fermi level.

The position of the Dirac point, being defined as a single
point in momentum space where the π bands cross each other,
is not straightforward to determine. As can be seen from Fig. 2
there is no such well-defined crossing point here. This is
presumably due to a band gap, as a study by Varykhalov et al.33

has shown that some metallic dopands do induce a band gap
at the Dirac point. We estimate the width of the band gap to be
0.3 eV with the position of the Dirac point at 1.35 eV below
the Fermi level, which is, within a tenth of an eV, equal to the
values previously obtained for graphene/Ir(111)15 and some
other systems, such as graphene/SiC11 and graphite.12

FIG. 2. (Color online) ARPES spectrum (excitation energy 40.5
eV, s polarization, and scan direction �-K-M) showing the intensity
of photoemission from the Dirac cone in graphene/Ir(111) saturated
with potassium.

The shift of the Dirac point to higher binding energies
causes an increase of the Fermi surface, which is for higher
doping levels characterized by trigonal warping; i.e., an effect
when a transformation of the constant energy maps from
circular to trigonal shape takes place.11,14 The trigonal warping
is clearly associated with different values of kF for the π∗ band
dispersing from K to M or �. We have determined kF along
the directions K-� and K-M to be 0.18 Å−1 and 0.27 Å−1,
respectively, and used these values to estimate the doping level
of about 0.05 electrons per unit cell.

A prominent feature of the spectrum in Fig. 2 is the
renormalization of the K-M branch of the π∗ band just below
the Fermi level. No such renormalization is as obvious for the
branch K-�. This kinklike change of the band dispersion is
detailed in Fig. 3.

As we have pointed out, two parts of the spectrum in
Fig. 2 show a considerable difference of spectral intensity.
The change of the light polarization can additionally alter this
intensity ratio. We used p polarization of the incident light
in order to extinguish spectral features along K-� entirely,
leaving only the part of the π∗ band along the K-M direction
visible. The origin of the diminishing spectral intensity has
been explained by Gierz et al.34 The change of the light
polarization strongly enhances signal to noise ratio which
shows to be essential in detailed spectrum analysis, as will
be demonstrated in the following. Simple inspection of Fig. 3
places the phonon induced dispersion kink at around 200 meV
below the Fermi level. Notice how the dispersion kink is now
even more pronounced, accompanied by a strong drop of the
spectral intensity at the kink. In the following we present a
detailed analysis of the spectrum along the K-M direction,
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FIG. 3. (Color online) ARPES spectrum of potassium interca-
lated graphene/Ir(111) (excitation energy 40.5 eV, p polarization, and
scan direction �-K-M) along with a few selected MDC and EDC cuts
at given energies and momenta.

and only state the results for the K-� direction for which the
analysis is presented in the Supplemental Material, Ref. 29.

V. ANALYSIS AND DISCUSSION

A set of MDC and EDC cuts in Fig. 3 illustrates the kind of
analysis made for each and every slice of the ARPES spectrum
shown. MDCs are generally characterized by a continuous
change of the peak position without any substantial change of
the line shape, apart from the width of the peaks. However, in
the narrow region around the kink, the EDCs clearly exhibit
double peak structure that can be fitted with two Lorentzians.
The energy splitting between the peaks is found to be around
60 meV. Farther away, ± 70 meV from the kink, EDCs can
be described by a single Lorentzian. A small peak visible in
EDCs just below the Fermi level is associated with the S1

surface state of Ir(111).31

Note that the full width at half maximum of the MDC at
an energy just below the Fermi level (Fig. 2) is 0.022 Å−1,
which is even slightly smaller than the width measured for
bare graphene on Ir(111)23 and comparable to nonintercalated
graphene on SiC.5 The measured width of 0.022 Å−1 is
substantially smaller than the previously reported value of
0.095 Å−1 for the same system.15 This questions the conclusion
by Bianchi et al.15 that the doping of graphene/Ir(111) by
potassium increases the electron scattering rate due to the loss
of translation symmetry induced by the incommensurability of
graphene and Ir(111). Our data imply that the intercalation of
potassium, observed as a disappearance of graphene’s moiré
superstructure, does not increase the electron scattering rate
compared to bare graphene on Ir(111). Therefore, we can
conclude that potassium intercalated into graphene/Ir(111)
system does not act as an additional scattering center. As
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FIG. 4. (Color online) Peak positions extracted from MDC cuts
(circles) and EDC cuts (squares) of the spectrum shown in Fig. 3.
Thick line shows the bare band Eb(k) obtained from the self-
consistent procedure.

we shall demonstrate later, the measured value of the MDC
width translates into rather big quasiparticle scattering time.
The MDC width increase (to 0.042 Å−1) measured below the
dispersion kink (Fig. 2) fits into the picture of phonon-induced
renormalization of the π∗ band.

Figure 4 summarizes the peak positions obtained from
MDC and EDC sets of spectra from Fig. 3. Open circles
represent peak positions obtained from the analysis of MDCs,
while squares are obtained from EDCs. The fact that the two
dispersions do not coincide, especially in the region above the
kink, is easy to understand when one takes into account that
the spectral intensity of the band sharply changes, and that
what is a local maximum km in a horizontal cut along E = Em

does not have to be a local maximum in a vertical cut along
k = km. The data below and above the kink are fitted with two
linear functions with noticeably different slopes. The data far
away from the Fermi level can be fitted with a linear curve and
the corresponding band velocity equals 0.7 × 106 m/s. This
represents a reduction of about 30% compared to the π band
of nearly neutral graphene on Ir(111), and is consistent with
the predicted reduction of the Fermi velocity, as calculated by
Park et al.35 The set of MDC data between the Fermi level
and the kink is also fitted with a linear function defined by
the band velocity (which is in this case the Fermi velocity as
well) vr (EF ) = 0.46 × 106 m/s. Note that this value is only
about half the Fermi velocity of the π band in bare graphene
on Ir(111)23 and the π∗ band on SiC.7 This renormalization
of the velocity can lead to an overestimate of the coupling
strength to phonons for the simple reason that the change of
the electron velocity near EF is largely due to the curvature of
the π∗ band induced by other interactions and only to a small
extent by electron-phonon coupling.19

In order to take into account the nonlinearity of the π∗
band, the bare-band function Eb(k) was self-consistently
reconstructed from the MDC data, by the recursive procedure
described above. The π∗ band itself has been measured far be-
low the phonon-induced kink, where the contribution to Re�
can be neglected and the bare band approaches the measured.21
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This gives confidence to the functions obtained, as the problem
of tails is greatly avoided. The corrections of Em(k) leading
to Eb(k) being mostly due to low-energy phonon excitations,
the function Eb(k) can be considered as one that takes into
account all electron interactions except those with phonons.

The derivative of the bare function at the Fermi level gives
the Fermi velocity for the bare band vb(EF ) = 0.56 × 106

m/s. The obtained values of band velocities, at the Fermi level
and far away from the kink, are in very good agreement with
the values of the band velocities for highly doped graphene,
reported by Siegel et al.7

To summarize, it is clear that a large portion of the velocity
reduction as we approach the Fermi level comes from the non-
linear nature of the bare π∗ band. The modification of the Fermi
velocity due to the coupling to phonons is accordingly rather
small, around 0.1 × 106 m/s, which is only a 10% change.

The ratio between the Fermi velocity of the bare band
and the electron-phonon-induced renormalized velocity at the
same energy gives, by Eq. (8), the value of the electron-phonon
coupling strength. Accordingly, the value of λ along the K-M
direction equals 0.22. The same analysis on the K-� direction
gives λ = 0.19.29 Previously, Bianchi et al.15 obtained λ =
0.28 for both directions.

We use MDCs extracted from the spectrum shown in Fig. 3
to plot (a) imaginary part of the self-energy, Im�(E), (b) real
part of the self-energy, Re�(E), and (c) spectral intensity of the
MDC peaks, A(E). Figure 5 shows the results. The functions
plotted in black were calculated from formulas (1)–(3) using
the bare band from our self-consistent iterative procedure. The
functions shown in red illustrate the degree of self-consistency
achieved; the one for Im�KK in Fig. 5(a) was obtained by
Kramers-Kronig transformation of the data for Re� from
Fig. 5(b), and, equally, the one for Re�KK from the data
for Im�. The overall agreement is quite good. We find the
data for FWHM and consequently for Im� more reliable, the
noise being pretty low and the relative error being smaller in
determining the width of the MDCs than the peak positions,
from which Re� is calculated. The effects of experimental
smearing also have a greater impact on the fine details of
MDC peak positions, adding only a constant background to
FWHMs and Im�. We suspect that the low-energy shoulder in
Re� (and the associated step in Im�KK) are for these reasons
less pronounced than the corresponding ones in Re�KK (and
Im�). The difference in experimental and calculated spectral

intensities in Fig. 5(c) at the high-energy side probably comes
from the fact that the calculated renormalized band Eb(km) +
Re�(Em) does not come close enough to the measured band
Em(km), as the increase of the spectral function would come
from one approaching the other [see Eq. (1)]. We suspect
this could be a still-observable consequence of the missing
high-energy tails.21

Generally, a steplike increase of Im�(E) and a maximum
of Re�(E) at the same energy is associated with electron
coupling to some excitation, in this case phonons. As pointed
out by McChesney et al.28 the coupling to a phonon should
have a profound impact on the energy dependence of the
spectral intensity A(E) as well.

Instead of one, all displayed spectral parameters show
consistently two features that can be accordingly associated
with the coupling to two phonons, one at 170 meV and the
second one at 75 meV. Arrows in Figs. 5(a)–5(c) indicate the
energies of these two phonons.

The Im�(E) [Fig. 5(a)] shows a distinct steplike increase
between 0.05 and 0.1 eV below the Fermi level with the initial
value of 39 meV which reaches a local maximum of 52 meV
at 0.1 eV. This increase of Im�(E) is associated with the
phonon of energy 75 meV. Further increase of Im�(E) up to
85 meV induced by the coupling to a phonon of 170 meV takes
place between 0.13 and 0.21 eV. Below that, Im�(E) stays
constant up to 0.4 eV, but then starts to increase with energy,
due to other contributions to the lifetime (electron-electron,
electron-plasmon).5

Electron-phonon coupling constant can be extracted from
the change of Im�(E) by Eq. (6).11,30 The total increase of
Im�(E) equal to 46 meV translates to λ = 0.17 ± 0.01 along
the K-M direction. A similar analysis of Im�(E) along the
K-� direction gives λ = 0.18 ± 0.02.29

Re�(E), consistent with Im�(E) and A(E), shows a peak
at 170 meV and a distinct shoulder at a lower binding-energy
side, which clearly implies an existence of two excitations that
contribute to the renormalization of the bare-band dispersion.

Using the imaginary part of the self-energy in the proximity
of the Fermi level, we determine the photohole scattering
time, τ = h̄

2 Im�
,36 to be bigger than 10 fs. This is the same

value as obtained for high quality graphene on SiC.37 Note
that this value is not to be compared to the scattering time in
mobility measurements (∼350 fs), as those include some more
scattering mechanisms.36

FIG. 5. (Color online) Set of self-consistent functions obtained from MDC cuts of the spectrum shown in Fig. 3 and the bare band shown
in Fig. 4. (a) Black line: Im� calculated by Eq. (3); red line: Im�KK as a Kramers-Kronig transform of Re�; (b) black line: Re� calculated
by Eq. (2); red line: Re�KK as a Kramers-Kronig transform of Im�. (c) Spectral intensity A(E) from the experiment (blue line) and calculated
from the self-consistent data by Eq. (1) (black line). Arrows indicate the energies of phonons that induce band renormalization.
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As pointed out, the energy dependence of the spectral
intensity A(E) also indicates the existence of two distinct
phonon excitations that couple to electrons. McChesney et al.28

have demonstrated a high sensitivity of A(E) to many-body
interactions, drawing attention to the fact A(E) can access
even a faint contribution to the self-energy with a sensitivity
even better than Im�(E) can provide. In agreement with this
model we observe two shoulders in A(E) where an onset of
each shoulder corresponds to a phonon excitation (see Fig. 2
in Ref. 28). Summarizing the features that have been observed
in three parameters, Im�(E), Re�(E), and A(E), we can
conclude, with a high degree of consistency, that the phonon
energies that induce the renormalization of the dispersion of
the π∗ band of doped graphene along the K-M direction have
energies equal to 170 and 75 meV. These two phonons can be
associated with an optical phonon (transverse or longitudinal)
around K and an acoustic phonon, respectively. According
to González and Perfetto,38 in noninteracting graphene these
phonons should be in-plane oscillations as the symmetry does
not allow coupling of the out of plane phonons to electrons in
graphene. However, the presence of the substrate might break
the two-dimensional symmetry of graphene and hence allow
the coupling of both in-plane and out-of-plane oscillations to
electrons in graphene.

Some theoretical calculations also support the notion
of a two-phonon spectrum that induces renormalization of
graphene bands close to the Fermi level. According to Calandra
and Mauri,36 the π∗ band of doped graphene should show two
kinks in the dispersion (accordingly accompanied by two steps
in the MDC linewidth), one at 195 meV being attributed to A1

mode and another at 160 meV which corresponds to a twofold
degenerate E2g mode. Previous measurements of Bianchi
et al.15 with graphene on Ir(111) showed signatures in the band
dispersion and widths of spectral curves of apparently only one
phonon. However, their self-consistent analysis showed that
the experimental data can be modeled by contributions of five
Einstein oscillators with energies that are evenly distributed
over the range from 21 to 190 meV.

Interestingly, the pattern of coupling similar to the one
we observed in graphene/Ir(111) is also reported for CaC6

where the contributions to the self-energy come from two
phonons, one at 75 meV and the other at around 160 meV.12

This agreement supports the notion that intercalated atoms (K
or Ca) do not participate in the coupling of the π∗ band to
phonon modes apart from the doping effect.

The energy splitting between the EDC peaks has already
been observed in materials with strongly coupled electrons

and phonons.39,40 Although the coupling in graphene is not
as large, its two dimensionality is, according to Badalyan
and Peeters,41 a possible reason for an enhancement of the
effective coupling in the vicinity of the phonon energy. An
electron-phonon complex quasiparticle forms, giving rise to a
strong modification of the Dirac spectrum, seen as the branches
of the π∗ band in the neighborhood of the phonon emission
threshold.

The value of the electron-phonon coupling constant ob-
tained in this work (∼0.2) is somewhat smaller than the one
obtained by Bianchi et al.15 for the same system (∼0.3).
Nevertheless, the value derived from our spectra does not
support the notion of Siegel et al.17 that the coupling in
n-doped graphene on a metallic surface should be still a few
times smaller (∼0.04). Given sharp enough spectra, low in
background intensity and noise, a pronounced kink in the
π∗ band dispersion, and especially a steplike increase of the
spectral width at the phonon energy, must alone be a clear sign
of a non-negligible strength of interaction, whatever the choice
for the bare band is.

VI. CONCLUSIONS

In conclusion, we have analyzed various parameters from
high resolution ARPES measurements—peak positions and
widths of MDCs, imaginary and real part of the self-energy
�(E), and spectral intensity A(E)—all consistent with the
notion that two phonons contribute to the renormalization of
the band dispersion in graphene on Ir(111): a high energy
phonon at 170 meV and a low energy phonon at 75 meV.
The coupling constant associated with these two phonons is
around 0.2, which is similar to a previous finding for the
same system. We have also found that the intercalation of
potassium up to saturation does not increase the scattering rate
of the photohole in the π∗ band. Due to the perfectness of
the K/graphene/Ir(111) structure the quasiparticle (photohole)
scattering time can be posed exceptionally high, above
10 fs.
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