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Scaling of the superfluid density in high-temperature superconductors
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Abstract

A scaling relation Nc ’ 4.4rdcTc has been observed parallel and perpendicular to the copper–oxygen planes in the high-temperature
superconductors; Nc is the spectral weight and rdc is the dc conductivity just above the critical temperature Tc. In addition, Nb and Pb
also fall close to this scaling line. The application of the Ferrell–Glover–Tinkham sum rule to the BCS optical properties of Nb above and
below Tc yields Nc ’ 8.1rdcTc when the normal-state scattering rate is much greater than the superconducting energy gap (1/s > 2D, the
‘‘dirty’’ limit). This result suggests that the high-temperature superconductors may be in the dirty limit. The superconductivity perpen-
dicular to the planes is explained by the Josephson effect, which again yields Nc ’ 8.1rdcTc in the BCS formalism. The similar forms for
the scaling relation in these two directions suggests that in some regime the dirty limit and the Josephson effect may be viewed as
equivalent.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Scaling laws express a systematic and universal simplic-
ity in nature. Since the discovery of superconductivity at
elevated temperatures in copper-oxide materials some 20
years ago [1], there has been considerable effort to identify
trends and correlations between the physical quantities as a
clue to the origin of the superconductivity [2]. One of the
earliest patterns that emerged was the linear scaling of
the superfluid density qs in the copper–oxygen planes of
the hole-doped materials with the superconducting transi-
tion temperature Tc (where qs is proportional to the num-
ber of carriers in the condensate ns; in addition qs / 1/k2,
where k is the superconducting penetration depth). This
is the celebrated Uemura relation [3,4] and it works well
for the underdoped materials. However, this relation
appears to break down in the very underdoped [5] and
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overdoped [6,7] materials (optimal doping is defined where
Tc is a maximum [8]).

In contrast, we have recently demonstrated a scaling
relation Nc ’ 4.4rdcTc [9–11], where Nc is the spectral
weight of the condensate (Nc = qs/8) and rdc is the dc con-
ductivity just above the critical temperature. (In this
instance both sides of the equation possess the same units,
so that the constant is dimensionless. The dimensionless
constant and the description of the scaling in terms of Nc

rather than qs results in a prefactor which is smaller than
observed in our previous work [9]). This relation appears
to hold regardless of the doping level or type, nature of
the disorder, or direction (along or perpendicular to the
copper–oxygen planes). In addition to the copper-oxide
materials, the simple elemental BCS superconductors Nb
and Pb are also observed to follow this relation. The opti-
cal properties of Nb were calculated in the normal and
superconducting states. The spectral weight Nc is then
determined from conductivity sum rules. The linear scaling
Nc / rdcTc is recovered in the BCS ‘‘dirty’’ limit 1/s > 2D,
where 1/s is the normal-state scattering rate and 2D is the
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Fig. 1. The log–log plot of the spectral weight of the condensate Nc vs Tc

of the hole-doped copper-oxide superconductors for pure and Pr-doped
YBa2Cu3O6+x; pure and Zn-doped YBa2Cu4O8; pure and Y/Pb-doped
Bi2Sr2CaCu2O8+d; underdoped La2�xSrxCuO4; Tl2Ba2CuO6+d; electron-
doped (Nd,Pr)2�xCexCuO4 and the bismuth oxide material Bi1�xKxBiO3.
The underdoped materials follow the Nc / Tc relation reasonably well
(dashed line); however, the optimally and overdoped materials, as well as
the electron-doped systems, deviate substantially from this line. (The
values used in the plot are shown in Table I of Ref. [11].)
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isotropic BCS superconducting energy gap (T� Tc). This
result suggests that the copper-oxide materials may be in
the ‘‘dirty’’ limit. The superconductivity perpendicular to
the planes is thought to arise from Josephson coupling;
interestingly, this approach again yields the scaling relation
Nc / rdcTc [10]. This result and a possible connection with
the in-plane behavior is discussed.

2. Experiment and results

The relevant experimental quantities here are the spec-
tral weight of the condensate (Nc / 1/k2) for T� Tc and
rdc at T ’ Tc. Normally, these two quantities are deter-
mined using different experimental techniques on different
samples where the dopings are at best similar, but never
identical. A fundamental advantage of optical reflectance
techniques is that the real and imaginary parts of the dielec-
tric function ~� ¼ �1 þ i�2 may be determined, allowing both
Nc and rdc to be calculated for the same sample. The reflec-
tance of a large number of single and double layer cuprates
has been measured over a wide frequency range by a num-
ber of different workers, and the Kramers–Kronig analysis
used to calculate the complex optical properties [11]. The
real part of the optical conductivity is r1(x) = �ix�2/4p
(in units of cm�1), and rdc = r1(x! 0) at T ’ Tc. For
T� Tc, the response of ~� to the formation of a supercon-
ducting condensate is ideally purely real, thus �1 ¼
�1 � x2

ps=x
2, and x2

ps ¼ �x2�1ðxÞ in the x! 0 limit. Here,
x2

ps ¼ 4pnse2=m� is the square of the superconducting
plasma frequency, ns is the superconducting carrier concen-
tration, m* is an effective mass, and �1 is the high-fre-
quency contribution to the real part of the dielectric
function. The strength of the condensate is simply
qs � x2

ps, which is proportional to ns/m*. The value of qs

may also be estimated by examining the changes in the
optical conductivity just above and well below Tc. The
f-sum rule for the conductivity [12] has the formR1

0 r1ðxÞdx ¼ x2
p=8, where x2

p ¼ 4pne2=m is the classical
plasma frequency. The spectral weight at a given cut-off
frequency xc is defined here as

Nðxc; T Þ ¼
Z xc

0þ
r1ðx; T Þdx; ð1Þ

which is simply the area under the conductivity curve. The
copper-oxide materials, and superconductors in general,
show a dramatic suppression of the low-frequency conduc-
tivity upon entering the superconducting state; this differ-
ence between the T ’ Tc and T� Tc conductivities is
often referred to as the ‘‘missing area’’. The spectral weight
associated with the formation of the superconducting con-
densate is then Nc = Nn � Ns, where Nn � N(xc,T ’ Tc),
and Ns � N(xc,T� Tc), and xc is chosen such that Nc con-
verges. Here, Nc is simply the spectral weight associated
with the missing area in the conductivity, which is related
to the square of the superconducting plasma frequency

x2
ps ¼ 8N c; ð2Þ
or qs = 8Nc. This expression is the well-known Ferrell–
Glover–Tinkham sum rule [13,14]. These two different
techniques typically yield nearly identical values for qs;
an exception exists in the underdoped materials perpendic-
ular to the planes, where it has been suggested that there is
missing spectral weight [15]. The optically-determined val-
ues of xps and rdc [16] for a wide variety of copper–oxygen
superconductors are listed in Table I of Ref. [11].

3. Discussion

In order to determine whether or not the Uemura rela-
tion is appropriate for the optical data, a plot of Nc vs Tc

for the copper-oxide superconductors was investigated,
shown in the log–log plot in Fig. 1. While the data points
that characterize the underdoped materials follow the
Nc / Tc relation (the dashed line in Fig. 1), many of the
optimally and overdoped materials do not. The electron-
doped materials in particular present a serious problem
as they fall well off the scaling line. In contrast, a plot of
Nc vs rdcTc shown in Fig. 2 indicates that, within error,
all of the points may be described by the relation Nc ’
4.4rdcTc.

A surprising result in Fig. 2 is that in addition to the
copper-oxide superconductors, materials such as Pb and
Nb also fall very close to the scaling line. The copper-oxide
materials are thought to possess gaps which are d wave
in nature and contain nodes [17,18]. A gap with dx2�y2



Fig. 2. The log–log plot of the spectral weight of the condensate Nc vs
rdcTc for the same materials shown in Fig. 1. Within error, all the points
may be described by a single (dashed) line, Nc ’ 4.4rdcTc; the upper and
lower dotted lines represent approximately the spread of the data.

Fig. 3. The log–log plot of the predicted behavior from the BCS model of
the spectral weight of the condensate Nc in Nb for a wide range of
scattering rates 1/s = 0.05D! 50D, and assuming a plasma frequency
xp = 56000 cm�1, critical temperature Tc = 9.2 K and an energy gap of
2D = 3.5kBTc (solid line). The dashed line indicates 1/s = 2D. To the right
of this line the material approaches the clean limit with a residual
resistance ratio (RRR) of J 100; the right arrow indicates that for larger
RRR’s, rdc close to Tc increases, but Nc has saturated to x2

p=8 (or
qs ! x2

p; the data point for Nb in this regime is from Ref. [21]). As the
scattering rate increases, the spectral weight of the condensate adopts a
linear scaling behavior (dotted line); the two points for Nb (Refs. [22,23])
shown in Fig. 2 lie close to this line, indicating that they are in the dirty
limit. The scaling relation shown in Fig. 2 (dash-dot line) is slightly offset
from the BCS dirty-limit result.
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symmetry may be written as Dk = D0[ cos(kxa) � cos(kya)];
the gap reaches a maximum at the (0,p) and (p,0) points,
and vanishes along the nodal (p,p) directions. On the other
hand, metals such as Pb and Nb are BCS superconductors
which have nearly isotropic s-wave energy gaps. The two
systems might reasonably be expected to follow different
scaling relations. A deeper understanding of the scaling
relation as it relates to BCS superconductors, and possibly
the copper-oxide materials, may be obtained from an
examination of the spectral weight above and below Tc

as determined by the normal-state scattering rate and an
isotropic superconducting energy gap. In order to achieve
this, the optical properties for Nb have been calculated in
both the normal and superconducting states. The ‘‘metal-
lic’’ normal state may be described by the Drude model
where the complex dielectric function is

~�ðxÞ ¼ �1 �
x2

p

xðxþ icÞ ; ð3Þ

�1 and the xp have been previously defined, and c = 1/s.
The dielectric function and the conductivity are related
through ~r ¼ r1 þ ir2 ¼ �ixð~�� �1Þ=4p. Thus r1 = rdc/
(1 + x2s2) with rdc ¼ x2

ps=4p (in units of cm�1), which
has the shape of a Lorentzian centered at zero frequency,
with a width of 1/s. The plasma frequency for Nb has been
taken to be xp = 56000 cm�1 [19]. The behavior of Nb in
the superconducting state has been calculated using the
BCS model [20] for an arbitrary purity level with a critical
temperature of Tc = 9.2 K and a gap of 2D = 22.3 cm�1

(the BCS weak-coupling limit 2D = 3.5kBTc); a wide range
of normal-state scattering rates 1/s = 0.05D! 50D have
been examined. The spectral weight of the condensate Nc

has been determined by integrating to xc ’ 200D; Nc is ob-
served to converge smoothly for all the values of 1/s exam-
ined. The result of this calculation is shown as the solid line
in Fig. 3, and the vertical dashed line indicates where 1/s =
2D. The point to the right of the dashed line is for Nb
recrystallized in ultra-high vacuum [21] to achieve condi-
tions in which the residual resistivity ratios [q(RT)/
q(T J Tc)] are well in excess of 100, and where N c !
x2

p=8 (or qs ! x2
p) for T� Tc. As the scattering rate

increases the strength of the condensate begins to decrease
until it adopts the linear scaling behavior Nc ’ 8.1rdcTc

observed in Fig. 3. (It should be noted that the BCS model
yields the same asymptotic behavior in the dirty limit,
regardless of the choice of xp or D; the constant is only sen-
sitive upon the ratio of D to Tc.) The two points for Nb
shown in Fig. 2 [22,23], (reproduced in Fig. 3), fall close
to this line and are clearly in the dirty limit. Thus, the scal-
ing relation Nc or qs / rdcTc is the hallmark of a BCS
dirty-limit system [24]. The presence of rdc in the scaling
relation indicates the nature of the superconductivity de-
pends on the normal-state scattering rate. To illustrate this
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point more clearly, we consider the two extreme limits in
Fig. 3; the clean and dirty limits.

The clean limit case (1/s� 2D) is illustrated in Fig. 4 for
the choice 1/s = 0.2D. Nearly all of the spectral weight
associated with the condensate lies below 2D. As a result,
the normalized spectral weight of the condensate 8Nc/qs

(the difference in the area under the two curves indicated
by the hatched region) shown in the inset of Fig. 4,
approaches unity at frequencies closer to 1/s rather than
2D. The spectral weight for the condensate may be esti-
mated simply as a geometric area Nc ’ rdc/s. If 1/s / Tc

for T ’ Tc in the copper-oxide materials [25], then
Nc / rdcTc, in agreement with the observed scaling rela-
tion. It is interesting to note that 1/s / Tc may yield rather
large values for the normal-state scattering rate, and it has
been suggested that the copper-oxide materials are close to
the maximum level of dissipation allowed for these systems
[26]. In addition, to achieve the clean limit it is not only
necessary that 1/s� 2D0, but also that 1/s [ 2Dk in the
nodal regions. The clean-limit requirement is much more
stringent for a d-wave system than it is for a material with
an isotropic energy gap, and it is not clear that it will ever
be satisfied in the copper-oxide superconductors. This sug-
gests that a dirty-limit view may be more appropriate. It
should be emphasized at this point that in the high-temper-
ature superconductors the large normal-state scattering
Fig. 4. The optical conductivity for the BCS model in the normal (solid
line) and superconducting states (dashed line) for a material in the clean
limit (1/s� 2D). The normal-state conductivity is a Lorentzian centered at
zero frequency with a full width at half maximum of 1/s for T ’ Tc. The
spectral weight associated with the formation of a superconducting
condensate is indicated by the hatched area. The majority of spectral
weight lies below 2D. Inset: Nn � N(x,T ’ Tc) (solid line), Ns � N(x,
T� Tc) (dashed line), and difference between the two Nc = Nn � Ns (long-
dashed line) normalized with respect to qs/8; 8Nc/qs converges rapidly to
unity and is fully formed at energies comparable to 1/s.
rate is not due to impurities, but rather from out-of-plane
disorder, correlation effects, or possibly a combination of
both.

The BCS dirty limit (1/s > 2D) is shown in Fig. 5 for the
choice of 1/s = 10D. In this case the normal-state conduc-
tivity is a broadened Lorentzian, and much of the spectral
weight has been pushed out above 2D. As a result, the nor-
malized spectral weight of the condensate, shown in the
inset, converges much more slowly than in the clean-limit
case. However, a majority of the spectral weight is captured
by 2D and Nc is almost fully formed above 4D. In this case,
the spectral weight of the condensate (the hatched area in
Fig. 5) may be estimated as Nc ’ rdc2D. In the BCS model,
the energy gap 2D scales linearly with Tc, yielding Nc /
rdcTc, which is in agreement with the observed scaling rela-
tion. This result necessarily implies that the energy scale for
the condensate is proportional to Tc.

The scaling relation predicted by the BCS model has a
numerical constant of 8.1, but the geometrical estimate
assuming weak coupling yields a value of only 2.4. An
examination of Fig. 5 indicates that this discrepancy arises
from the fact that Nc ’ rdc2D underestimates the spectral
weight by more than a factor of two. The results from
Fig. 3 suggest that a more realistic estimate of the area is
Nc ’ 3.3(rdc2D), which assuming weak coupling yields
the correct numerical constant in the scaling relation. The
observed scaling relation in the cuprates would imply that
2D/kBTc ’ 2. However, this statement suffers from the fact
Fig. 5. The optical conductivity for the BCS model in the normal (solid
line) and superconducting states (dashed line) for a material in the dirty
limit (1/s J 2D). The spectral weight associated with the formation of a
superconducting condensate is indicated by the hatched area. A significant
amount of spectral weight lies above 2D. Inset: Nn � N(x,T ’ Tc) (solid
line), Ns � N(x, T� Tc) (dashed line), and difference between the two
Nc = Nn � Ns (long-dashed line) normalized with respect to qs/8; 8Nc/qs

converges at energies comparable to 4D.
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that it is valid only within a BCS formalism for an isotropic
s-wave gap. Another, perhaps more reasonable, explana-
tion for the different numerical constants between the
BCS and high-temperature superconductors may arise
from the fact that copper-oxide superconductors have
nodes in the energy gap, and as a consequence there is still
a substantial amount of low-frequency residual conductiv-
ity at low temperature [27] resulting in a reduced estimate
for the spectral weight for the condensate.

It was previously noted [9] that the scaling relation Nc ’
4.4rdcTc is a universal result that describes not only the
copper–oxygen (a–b) planes, but perpendicular to the
planes (c-axis) as well, as shown in Fig. 6. While a descrip-
tion of the scaling based on scattering rates within the
context of clean and dirty limits may be appropriate for
the a–b planes where the transport is coherent, it is inap-
propriate along the c-axis, where the activated nature of
the temperature dependence of the resistivity indicates that
the transport in this direction is incoherent and governed
by hopping [28]. In this case, the superconductivity along
the c-axis may be described by the Josephson effect, which
for the BCS weak coupling case (2D = 3.5kBTc) yields
Nc ’ 8.1rdcTc [10]. Surprisingly, this is precisely the result
that was obtained in the a–b planes for the BCS weak-cou-
pling case in the dirty limit in Fig. 3, indicating that from a
functional point of view the scaling behavior of the dirty
limit and the Josephson effect are nearly identical. Because
these calculations have all been performed using a BCS for-
Fig. 6. The log–log plot of the spectral weight of the condensate Nc vs
rdcTc for the a–b planes and the c-axis for a variety of cuprates. Within
error, all of the points fall on the same universal (dashed) line defined by
Nc ’ 4.4rdcTc; the dotted line is the dirty limit result Nc ’ 8.1rdcTc for the
BCS weak-coupling case (2D = 3.5kBTc) from Fig. 3, and also represents
the Josephson result for the BCS weak-coupling case, used to describe the
scaling along the c-axis [10]. The subscripts for the c-axis data points
indicate different chemical dopings. (Values for the c-axis points are listed
in the supplemental information of Ref. [9].).
malism, there is some uncertainty in applying these results
to d-wave systems. It is possible that the Josephson effect
arises naturally out of systems with an increasing amount
of disorder and as a result any crossover from coherent
to incoherent behavior still yields the same form of the scal-
ing relation. The dynamical nature of the electronic inho-
mogeneities in the copper–oxygen planes may support
this argument [29].

4. Conclusions

The implications of the linear scaling relation Nc or
qs / rdcTc in the copper-oxide superconductors have been
examined within the context of clean and dirty-limit sys-
tems. In the conventional BCS superconductors (such as
Nb), this linear scaling is the hallmark of a dirty-limit
superconductor. The copper-oxide materials are thought
to be d-wave superconductors, in which the clean limit
may be difficult to achieve. The observed linear scaling sug-
gests that the copper-oxide superconductors may be close
to or in the dirty limit. Estimates of Nc (or qs) based on
geometric arguments imply that the energy scale below
which the majority of the spectral weight is transferred into
the condensate scales linearly with Tc. The a–b planes and
the c-axis are observed to follow the same scaling relation.
The scaling behavior for the dirty limit and the Josephson
effect (assuming a BCS formalism) is essentially identical
from a functional point of view, suggesting that in some
regime these two effects may be viewed as equivalent.
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