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The optical conductivity sum rule is used to examine the evolution of the spectral weight N(ω)
in both the normal and superconducting states of optimally and underdoped YBa2Cu3O6+x

along the a axis. Differences in N(ω) above and below Tc allow the strength of the supercon-
ducting condensate ρs to be determined. In the optimally-doped material, ρs is fully formed
at energies comparable to the full superconducting gap maximum ('0.1 eV), while in the
underdoped material the energy scale for convergence is considerably higher ('0.6 eV). This
difference is discussed in terms of normal-state properties.
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Sum rules and conservation laws play an impor-
tant role in physics. In spectroscopy, the conductivity
sum rule is particularly useful and is an expression of
the conservation of charge [1]. In BCS superconduc-
tors, below the critical temperature Tc some fraction
of the carriers collapse into the δ-function at zero fre-
quency, with a commensurate loss of spectral weight
from low frequencies (below twice the superconduct-
ing energy gap). This missing spectral weight may
be quantified by another sum rule as discussed by
Ferrell, Glover, and Tinkham (the FGT sum rule)
[2,3] to determine the strength of the superfluid ρs

(or superfluid stiffness), where ρs = c2/λ2
L, and λL is

the London penetration depth. The BCS theory holds
that while the kinetic energy of the superconducting
state is greater than that of the normal state [4], this
increase is compensated by the reduction in potential
energy which drives the transition [5]. However, it has
been proposed that in certain hole–doped materials
the superconductivity could arise from a lowering of
the kinetic rather than the potential energy [6]. In
such a case, the FGT sum rule might appear to be vi-
olated and ρs would be too small (λL would be too
large). Similar models in the cuprate materials pre-
sume either strong coupling [7,8], or that the normal
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state is not a Fermi liquid and that superconductivity
is driven either by the recovery of frustrated kinetic
energy when pairs are formed [9,10], by lowering the
in-plane zero-point kinetic energy [11], or by the con-
densation of preformed pairs [12].

Here we examine the evolution of the spectral
weight along the a axis of YBa2Cu3O6+x for two dif-
ferent oxygen dopings; optimally doped (x = 0.95)
with Tc ' 91 K, and underdoped (x = 0.60) with Tc '
57 K. The presence of copper–oxygen chains along the
b axis is a complicating factor in these materials. How-
ever, by examining the a-axis direction, it is thought
that only the dynamics of the copper–oxygen planes
are probed. Details of the crystal growth and the re-
flectance technique, from which the optical proper-
ties are calculated from a Kramers–Kronig analysis,
have been discussed in previous report [13]. While
the experimental error in the optical conductivity pre-
cludes definitive statements based on sum rules about
possible kinetic energy changes (the accuracy of the
sum rule is no better than 5%, while the maximum
kinetic energy contribution is less than 0.3% of the
total weight of the condensate in the optimally-doped
material) (D. van der Marel, private communication),
the spectral weight shows distinctly different behav-
ior in the optimally doped and underdoped materials,
establishing different energy scales for the supercon-
ductivity in these two systems.

Optical sum rules comprise a useful set of tools
to study and characterize the lattice vibrations and
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Fig. 1. The temperature dependence of the optical conductivity of
YBa2Cu3O6.95 for light polarized along the a axis. There is consid-
erable narrowing of the Drude-like response as the temperature
decreases in the normal state, followed by a loss of low-frequency
spectral weight below Tc. Inset: The frequency-dependent scatter-
ing rate, which shows no evidence for a pseudogap in the normal
state; ωp,a is the estimated value of the plasma frequency used to
scale 1/τa(ω).

electronic properties of solids [1]. The spectral weight
may be estimated from a partial sum rule of the con-
ductivity [14]3

N(ωc) = 120
π

∫ ωc

0
σ1(ω) dω

ωc→∞−→ ω2
p, (1)

whereω2
p = 4πne2/m is the classical plasma frequency,

n is the carrier concentration, and m is the mass. In the
absence of bound excitations, this expression is exact
in the limit of ωc →∞, thus N(ωc →∞) ≡ ω2

p and
the spectral weight is ∝ n/m. A variation of the con-
ductivity sum rule is used to study the amount of spec-
tral weight that collapses into the superconducting δ
function at the origin for T ¿ Tc.

This is illustrated by the optical conductivity for
YBa2Cu3O6.95 for light polarized along the a axis,
shown in Fig. 1. The optical conductivity can be de-
scribed simply by using a “two-component” picture,
which consists of a series of Lorentzian oscillators in-
cluding a Drude term at zero frequency and several
bound excitations to describe the broad mid-infrared

3The term 120/π before the integral assumes that the units of con-
ductivity are inÄ−1cm−1, so that the integral yields cm−2. The fac-
tor in front of the integral is sometimes expressed as 2m∗Vc/πe2,
where Vc is the volume of the unit cell, in which case the integral
yields the effective number of carriers.

response [15]. The Drude-like response narrows con-
siderably at low temperature. However, for T ¿ Tc

there is a considerable loss of low frequency spec-
tral weight. An alternative description is the “single-
component” approach in which the scattering rate is
assumed to have a frequency dependence [16]. The
frequency-dependent scattering rate, shown in the in-
set, does not display a pseudogap [17] and may obey
its own sum rule [18].

The missing spectral weight represents the
strength of the condensateω2

pS (expressed as a plasma
frequency in units of cm−2). This area may be esti-
mated by the sum rule

ω2
pS =

120
π

∫ ωc

0+
[σ1,n(ω)− σ1,s(ω)] dω, (2)

where σ1,n(ω) ≡ σ1(ω, T & Tc), and σ1,s(ω) ≡ σ1

(ω, T ¿ Tc). This is the FGT sum rule [2,3]. An
alternative method for extracting the superfluid
density relies on only the real part of the dielectric
function (the imaginary part of the conductivity).
A simple demonstration of this is to consider a
simple Drude metal with a dielectric function
ε̃(ω) = ε∞ − ω2

p/p[ω(ω + i0)], where 0 = 1/τ is the
scattering rate. If upon entering the superconducting
state for T ¿ Tc it is assumed that all of the carriers
collapse into the condensate, then ωps ≡ ωp and
0→ 0, so that the dielectric function becomes
ε̃(ω)→ ε1(ω) = ε∞ − ω2

pS/ω
2; in the limit of ω→ 0,

ρs ∝ ω2
pS = −ω2ε1(ω). It should be noted that this is a

general result and the response to the formation of a δ
function is not model dependent. The determination
of ρs from −ω2ε1(ω) has two main advantages:
(i) it relies only on the value of ε1(ω) for T ¿ Tc

and thus probes just the superfluid response, and
(ii) ρs is determined in a low-frequency limit, which
removes the uncertainty of the high-frequency cut-off
frequency ωc in the FGT sum rule estimates of the
condensate. We will distinguish between values of
the condensate determined from −ω2ε1(ω) as ρs, and
the FGT sum rule as ω2

pS. The two techniques should
in fact yield the same result, and it is indeed useful to
compare the high-frequency estimates of ω2

pS with ρs.
The spectral weight in the normal [Nn(ω) ≡

Nn(ω, T &Tc)] and superconducting state [Ns(ω) ≡
Ns(ω, T ¿ Tc)], as well as difference (the FGT sum
rule), is shown for YBa2Cu3O6.95 in Fig. 2; Nn(ω)
increases rapidly with frequency, but does not dis-
play any unusual structure. On the other hand, Ns(ω)
evolves more slowly, and has several inflection points
at low frequency which are thought to be related to the
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Fig. 2. The temperature dependence of the spectral weight of
YBa2Cu3O6.95 for light polarized along the a axis at T ' Tc (solid
line), and T ¿ Tc (dotted line). The difference between the two
is ω2

pS (dashed line). Note that ω2
pS is essentially fully-formed by

800 cm−1.

spectral function [19]. The difference between the two
curves ω2

pS = Nn(ω)− Ns(ω) is shown by the dashed
line in Fig. 2. This quantity increases quickly and then
saturates above≈800 cm−1 to a constant value. This is
of the order of twice the gap maximum, 210, which is
the relevant energy scale observed in a BCS system.

The optical conductivity for oxygen–underdoped
YBa2Cu3O6.60 for light polarized along the a axis, is
shown in Fig. 3. While there is a dramatic change in
the nature of the normal state with decreasing temper-
ature, for T &Tc the Drude-like conductivity has nar-
rowed considerably, and the scattering rate is in fact
smaller in the underdoped sample (0 ' 100 cm−1)
than in the optimally-doped case (0 ' 140 cm−1);
it is always the case that 0 < 210. For T ¿ Tc the
loss of low-frequency spectral weight is not as pro-
nounced, and it is evident that spectral weight has
been shifted to higher frequencies. The frequency-
dependent scattering rate is shown in the inset, and
clearly indicates the formation of a pseudogap in the
frequency-dependent in-plane scattering rate. This
has been interpreted as a change in the density of
states near the Fermi surface at temperatures above
Tc.

The development of the spectral weight above
and below Tc of YBa2Cu3O6.60 for light polarized
along the a axis is shown in Fig. 4. While much of the
overall behavior of Nn(ω) and Ns(ω) is similar to the
optimally-doped material, ω2

pS does not converge to a
value nearly as quickly. This point may be illustrated
more clearly by plotting the normalized value of the

Fig. 3. The temperature dependence of the optical conductivity
of YBa2Cu3O6.60 for light polarized along the a axis. The normal-
state conductivity changes dramatically with decreasing tempera-
ture, but the Drude-like response is quite narrow at T ' Tc. The
loss of spectral weight for T ¿ Tc is not as pronounced at low fre-
quency, and it is evident that more spectral weight has been shifted
to higher frequencies. Inset: The frequency-dependent scattering
rate, which shows a pseudogap in the normal state; ωp,a is the esti-
mated value of the plasma frequency used to scale 1/τa(ω).

spectral weight of the condensate for the optimally
doped and underdoped materials, shown in Fig. 5. The
values of ρs,a have been obtained from an analysis
of −ω2ε1(ω). For optimally doped YBa2Cu3O6.95 the
strength of the condensate, expressed in terms of a

Fig. 4. The temperature dependence of the spectral weight of
YBa2Cu3O6.60 for light polarized along the a axis at T ' Tc (solid
line), and T ¿ Tc (dotted line). The difference between the two
is ω2

pS (dashed line). The spectral weight is not recovered until

'5000 cm−1, or about 0.6 eV.



P1: JLS

Journal of Superconductivity: Incorporating Novel Magnetism (JOSC) pp1092-josc-479356 January 2, 2004 17:19 Style file version June 22, 2002

96 Homes, Dordevic, Bonn, Liang, and Hardy

Fig. 5. The normalized weight of the condensate [Nn(ω)−
Ns(ω)]/ρp,a for optimally-doped YBa2Cu3O6.95 (solid line) and
underdoped YBa2Cu3O6.60 (dotted line) along the a-axis direc-
tion. The curves describing the condensate have been normalized.
The condensate for the optimally-doped material has saturated by
'800 cm−1, while in the underdoped material the condensate is
roughly 80% formed by this frequency, but the other 20% is not
recovered until much higher frequencies. Inset: The low-frequency
region.

plasma frequency is
√
ρs,a = 8670 cm−1, while for the

underdoped material it is
√
ρs,a = 5620 cm−1, in good

agreement with previous estimates [13].
The energy scale required to recover the full

strength of the condensate ρs,a in the optimally-doped
material is ωc ' 800 cm−1 ('210), which is consistent
with BCS model. However, in the underdoped mate-
rials the energy scale is much higher, ωc & 5000 cm−1.
This effect cannot be attributed to dirty limit effects
as a result of increased scattering, as 0 < 210 in both
materials. A similar effect has also been observed in
the optical properties of optimally doped and under-
doped Bi2Sr2CaCuO8+δ [20]. The two very different
types of behavior observed in the optimal and under-
doped materials, in the normal and superconducting
states, suggests that the behavior of the electronic cor-
relations in the normal state determines the nature of
the superconductivity and the energy scales associ-
ated with it in these materials [21].
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