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Global trends in the interplane penetration depth of layered superconductors
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We report on generic trends in the behavior of the interlayer penetration depthlc of several different classes
of quasi-two-dimensional superconductors including high-Tc cuprates, Sr2RuO4, transition-metal dichalco-
genides and organic materials of the (BEDT-TTF)2X series. An analysis of these trends reveals two distinct
patterns in the scaling between the values oflc and the magnitude of thec-axis dc conductivitysdc : one
realized in the systems with a ground state formed from well-defined quasiparticles, and the other seen in
systems in which the quasiparticles are not well defined. The latter pattern is found primarily in underdoped
cuprates, and indicates a dramatic enhancement~a factor.102) of the energy scaleVC associated with the
formation of the condensate compared to the data for conventional materials. We discuss the implication of
these results on the understanding of superconductivity in high-Tc cuprates.
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I. INTRODUCTION

The formation of a superconducting condensate in
emental metals and their alloys is well understood within
theory of Bardeen, Cooper, and Schrieffer~BCS! in terms of
a pairing instability in the ensemble of Fermi-liquid~FL!
quasiparticles. Applicability of the FL description to high-Tc

cuprate superconductors is challenged by remarkable ano
lies found in both the spin and charge responses of th
compounds in the normal state.1 Because quasiparticles a
not well defined atT.Tc in most cuprates it is natural t
inquire into the distinguishing characteristics of a superc
ducting condensate which appears to be built from entir
different ‘‘raw material.’’ Infrared~IR! spectroscopy is per
fectly suited for this task. Indeed, the analysis of the opti
constants in the far-infrared unfolds the process of the
mation of the condensated(0)-peak in the dynamica
conductivity,2 and also gives insight into single-particle e
citations in the system both above and belowTc .

In this paper we focus on the interplane properties
high-Tc superconductors. We will show that the distinctio
in the behavior of the condensate in conventional superc
ductors and high-Tc cuprates are most radical in the case
the c-axis interplane response. The analysis of the gen
trends seen in the behavior of thec-axis condensate~corre-
lation between the penetration depthlc and the dc conduc
tivity sdc) allows us to infer the energy scaleVC associated
with the development of the superfluid in the cuprates. T
energy scale may dramatically exceed the energy gap in
tems lacking well-defined quasiparticles atT.Tc ~primarily
in underdoped cuprates3!. We discuss a connection betwee
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the magnitude ofVC and the nature of the normal-sta
response.

II. EXPERIMENTAL PROCEDURES

The response of the superconducting condensate ca
investigated through IR experiments probing the comp
conductivity s(v)5s1(v)1 is2(v) of a superconductor
At T,Tc the real part of the conductivity can be written a

s1
SC~v!5

rs

8
d~0!1s1

reg~v!. ~1!

The d(0)-peak term represents the response of the cond
sate with the superfluid densityrs54pnse

2/m* propor-
tional to the concentration of superconducting carriersns ,
and inversely proportional to their effective massm* . The
second term on the right-hand side of Eq.~1! is usually re-
ferred to as the regular component and represents the
ductivity that isnot due to the superconducting carriers.
may include conductivity due to unpaired carriers atT,Tc
at finite frequencies, phonons, interband transitions, m
nons, etc. Commonly, the condensate stiffness is chara
ized through the penetration depthl5c/Ars, the notation
we will use in this paper.

In order to discuss several techniques that can be
ploited to determine the interlayer penetration depth of
anisotropic superconductor we turn to our data
La1.83Sr0.17CuO4 ~La214! with Tc.36 K ~Fig. 1!. Large
single crystals were grown using the traveling-solve
floating-zone technique,4 and were carefully annealed to re
move excess oxygen. The crystallographic axes were de
©2002 The American Physical Society11-1
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mined by Laue diffraction, and the samples were then
into platelets with the ac planes parallel to the wide face. T
error in the axes directions is less than 1°. Near-norm
incidence reflectance measurements were performed
UCSD in a frequency range between 10 and 48 000 cm21 ~1
meV–6 eV!. The complex conductivitys(v) and complex
dielectric function e(v)5e1(v)1 i e2(v2) were inferred
from R(v) using Kramers-Kronig~KK ! analysis. The low-
and high-frequency extrapolations have negligible effects
the data in the measured frequency interval. Below we o
line common analysis techniques used to determine the
etration depth from the results of IR studies.

~1! Raw c-axis reflectance of high-Tc superconductors a
T!Tc exhibits a sharp plasma edge. In the case
La1.83Sr0.17CuO4 this feature is located at;85 cm21 ~Fig. 1,
panel A!. This behavior is in contrast to the featurele
normal-state reflectance. The position of the plasma edg
determined by the screened plasma frequencyṽp , from

FIG. 1. Interlayer response of La214 single crystals withTc

536 K: reflectanceR(v) ~panel A!; real and imaginary parts of th
conductivity ~panels B and C! and the products2(v)3v ~panel
D!. The c-axis penetration depth can be determined from the
data using several different techniques: from the position of
plasma minimum inR(v), from integrating the difference betwee
the s1(v,Tc) and s1(v,10K) @Eq. ~2!#, and from examining the
frequency dependence of thes2(v,10K)3v. The latter approach
may underestimate the magnitude oflc because of the screenin
effects associated with the response of unpaired charge carrie
T!Tc . We employed Eqs.~3! and ~4! to correct for this effect
~solid line in panel D!.
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which the penetration depth can be obtained
c2/l25ṽp

2e` ~Ref. 5!. In the latter equatione` is the real
part of the dielectric constante1(v) at frequencies above th
plasma edge. The numerical value ofe` is somewhat am-
biguous, and introduces an error in the result forlc . This
technique was employed in Refs. 6–9.

~2! In a BCS superconductor the formation of the conde
sate is adequately described with the Ferrel-Glover-Tinkh
~FGT! sum rule

rs5
c2

l2
5E

01

VC
@s1

N~v!2s1
reg~v!#dv, ~2!

wheres1
N(v) is the normal-state conductivity atTc , and the

upper integration limitVC is of the order of the gap energy
The upper cutoff issue for cuprates will be discussed in de
below. According to this sum rule the area ‘‘missing’’ from
the normal-state conductivity~shaded region in Fig. 1, pane
B! is recovered under thed(0) peak. This technique ma
somewhat underestimate the magnitude oflc because, at
least in underdoped cuprates, the superfluid density is a
mulated from a broad energy region significantly exceed
the gap energy.2,8,10,11This method was used for an analys
of the penetration depth in Refs. 12–14.

~3! Finally, the most commonly used method of extracti
lc is based on the examination of the imaginary part of
complex optical conductivity. By KK transformation, thed
peak atv50 in the real part of the optical conductivit
implies that the imaginary part has the forms2(v)
5c2/(4pvl2). Therefore, the magnitude oflc can be esti-
mated fromv3s2(v) in the limit of v→0 ~the gray line in
panel C of Fig. 1 or the dotted line in panel D! ~Refs.
2,6,8,10,11 and 15–18!.

While method 3 is very well suited to quantify the ma
nitude of the penetration depth, this technique also may
troduce systematic errors. Strictly speaking, the relat
s2(v)5c2/(4pvl2) is valid only if s1

reg(v)50. Typically,
this is not the case in high-Tc superconductors, which al
show residual absorption in the far-IR conductivity. This a
sorption may be~in part! connected withd-wave symmetry
of the order parameter in cuprates1 leading to gapless behav
ior at any finite temperature. Data displayed in Fig. 1, pa
B, clearly shows a nonvanishing IR conductivity down to t
lowest T and v. A finite regular contribution tos1(v) im-
plies a finite contribution tos2(v). Owing to this contribu-
tion the spectra ofs2(v) acquire a complicated frequenc
dependence that may significantly differ from the 1/v form
~Fig. 1, panels C and D!. Moreover, the magnitude of th
penetration depth extracted from such a spectrum is likel
be underestimated, even if the products2(v)3v is taken at
the lowest experimentally accessible frequencies.

Systematic errors in the magnitude ofl connected with
s1

reg(v).0 can be eliminated using the following proc
dure. The intrinsic value of the penetration depth can s
be determined froms2(v), if the imaginary part of the
conductivity is corrected bys2

reg(v) characterizing all
screening effects that are not due to superconducting car
at T,Tc :
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s2~v!2s2
reg~v!5

c2

4pvl2
. ~3!

To determines2
reg(v) we employ a KK-like transformation

s2
reg~v!52

2v

p E
01

` s1
reg~v8!

v822v2
dv8. ~4!

The result of the application of the correction procedure
the imaginary part of the conductivity is presented in Fig.
panel D. It appears that after subtraction ofs2

reg(v), the
remaining contribution to the conductivity reveals a 1/v be-
havior over an extended frequency region, supporting
soundness of the procedure proposed here. We emph
again thatno other correction procedure besides that d
scribed by Eqs.~3! and ~4! has been used. In the case
La1.83Sr0.17CuO4, the latter procedure leads only to a min
correction of the absolute value oflc (;18%). That is be-
cause the absolute value ofs1

reg(v) is relatively small and is
constant throughout far-IR~Fig. 1, panel B!. However, such
a correction can be much more significant for overdop
samples, which often show stronger Drude-like contributio
in s1

reg(v) spectra. Figure 1, panel D also shows a f
quently used approximation to the method we have just o
lined: instead of subtractings2

reg(v), one subtracts
s2(v,Tc) from s2(v,T!Tc). The resulting curve looks
somewhat better than the uncorrected one, but still yields
enhanced value ofv3s2(v) in the limit of v→0.

III. UNIVERSAL c-AXIS PLOT

The c-axis penetration depth in a layered superconduc
can be determined from IR experiments,2,6–18as described in
Sec. II. In addition, several other experimental techniqu
including magnetization measurements,19–26 microwave
absorption,27–33and vortex imaging34,35can be used to deter
mine the magnitude oflc . Regardless of the method em
ployed, the interlayer penetration depth in several families
cuprates reveals a universal scaling behavior with the m
nitude of sdc(T5Tc) ~Fig. 2! ~Ref. 15!: the absolute value
of lc is systematically suppressed with the increase of
normal state conductivity.36 The scaling is obeyed primarily
in underdoped cuprates~blue symbols in Fig. 2! . The devia-
tions from the scaling are also systematic, and are m
prominent in overdoped phases~red symbols in Fig. 2!. Such
deviations are a direct consequence of a well-establis
fact: on the overdoped side of the phase diagramsdc in-
creases, whereaslc is either unchanged or may show a m
nor increase.10,16,37

We find a similar scaling pattern betweenlc and sdc in
other classes of layered superconductors, including org
materials, transition metal dichalcogenides and Sr2RuO4
~Fig. 2!. While the noncuprate data set is not nearly as de
the key trend is analogous to the one found for cuprates.
slope of thelc2sdc dependence is also close for both c
prates and noncuprate materials. The principal differenc
that the cuprates universal line is shifted down by appro
mately one order of magnitude inlc . The latter result shows
13451
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that the superfluid density (}1/l2) is significantly enhanced
in underdoped cuprates compared to noncuprate mate
with the same dc conductivity.

Possible origins of thelc2sdc correlation were recently
discussed in the literature.38 A plausible qualitative accoun
of this effect can be based on the FGT sum rule@Eq. ~2!#. For
a dirty limit superconductors1

N(v)'sdc , and Eq.~2! can be
approximated as:

rs5
c2

l2
'2Dsdc . ~5!

Such an approximation is possible because within the B
model the energy scaleVC from which the condensate i
collected is of the order of magnitude of the gap:VC.2D
.(3 –5)kTc . A connection between 1/l2, sdc and 2D is
illustrated in the inset of Fig. 2. In the dirty limit the magn
tude of sdc sets the amount of spectral weight available
the normal-state conductivity, whereas the magnitude
VC.2D defines the fraction of this weight which is tran
ferred into condensate atT,Tc . Therefore, the magnitude o
lc can be expected to decrease systematically with the
hancement of the dc conductivity, in accord with the FG
sum rule. Notably, an approximate form@Eq. ~5!# yields the
lc2sdc scaling with the power lawa51/2 which is close to
a50.59 seen in Fig. 2.

The strong condensate density in the cuprates can be
derstood in terms of the dramatic enhancement of the en
scaleVC over the magnitude of the energy gap. This can
seen through a comparison of the universal scaling patt
observed for cuprates and of a similar pattern detected
noncuprate superconductors. The energy scale assoc
with the condensate formation for materials on the up
line, which for most conventional materials in Fig. 2 is clo
to estimates of the gap, is of the order of 1–3 meV.
Sr2RuO4, for example, 2D52.2 meV, based on Andreev re
flection measurements.39 If Eq. ~5!, in the form rs5c2/l2

'VCsdc appropriate for cuprates, is employed to descr
the difference between the upper and lower lines in Fig
then one can conclude that the corresponding scale for
derdoped cuprates is;100 times greater, i.e., of the orde
0.1–0.3 eV. This assessment ofVC is supported by the ex
plicit sum-rule analysis for several cuprates,2,11 and also
makesVC the largest energy scale in the problem of cupr
superconductivity.40

Data points in Fig. 2 for overdoped materials support
notion that thelc2sdc plot provides a means to learn abo
the energy scale associated with the condensate forma
Deflection of the overdoped cuprates from the universal l
implies thatVC is gradually suppressed with increased c
rier density. This trend is common for Tl2Ba2CuO61d
~Tl2201!, La214 and YBa2Cu3O72d ~YBCO! materials~see
Fig. 2!. Integration of the conductivity for all these ove
doped materials shows that the FGT sum rule is exhauste
energies as low as 0.08 eV~Refs. 10 and 11!.

In BCS superconductorsVC is related to 2D, and there-
fore to Tc . In cuprates we find no obvious connection b
tween the broad energy scaleVC and the critical temperature
1-3
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FIG. 2. ~Color! Thec-axis penetration depthlc(T>0K) as a function of thec-axis dc conductivitys1c(Tc). We find two distinct patterns
of lc2sdc scaling. Cuprate superconductors exhibit much shorter penetration depths than noncuprate materials with the samesdc(Tc). This
result implies a dramatic enhancement of the energy scaleVC from which the condensate is collected, as described in the text.
superconducting transition temperatureTc has not been found to be relevant to thelc2sdc scaling. Data points: YBCO~Refs. 6,15, and 17!,
overdoped YBCO~Refs. 12–15!, La214 ~Refs. 6,16,18, and 33!, HgBa2Cu2O4 ~Refs. 34 and 59!, Tl2201 ~Refs. 2,10 and 35!,
Bi2Sr2CaCu2O8 ~Refs. 7 and 23!, and Nd22xCexCuO4 ~Refs. 8 and 27!. Blue points, underdoped~UD!; green points, optimally doped~OpD!;
red points overdoped~OD!. Transition-metal dichalcogenides~Refs. 19–21,47 and 60–62!, (ET)2X compounds~Refs. 22,24,25,28–30, an
63–65!, (TMTSF)2ClO4 ~Refs. 66 and 67!, Sr2RuO4 ~Refs. 26 and 68!, niobium ~Refs. 31 and 32!, lead ~Ref. 32!, niobium Josephson
junctions~Ref. 69!, andaMo12xGex ~Ref. 70!. Inset: in a conventional dirty limit superconductor the spectral weight of the supercondu
condensate~given by 1/l2) is collected primarily from the energy-gap region~gray!. The total normal weight is preset by magnitude ofsdc ,
whereas the product of 2D3sDC quantifies the fraction of the weight that condenses.
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Tc . While scaling oflc by the magnitude ofTc does reduce
the ‘‘scattering’’ of the data points,33,38 the two distinctlc
2sdc patterns persist even if such scaling is implement
Similarly, the difference between the two lines in Fig. 2 ca
not be accounted for by differences inTc . In particular, the
critical temperature of strongly underdoped La214 mater
is nearly the same as that of the several ET compou
(.12–15 K). Nevertheless, the penetration depth is d
matically enhanced in the latter systems.

IV. IN-PLANE QUASIPARTICLES AND INTERPLANE
TRANSPORT

A quick inspection of the materials in Fig. 2 suggests t
a smaller condensate scale~top line! is observed in system
in which superconductivity emerges out of a normal st
with well-defined quasiparticles, whereas the enhanced v
13451
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of VC is found in underdoped cuprates for which the qua
particle concept may not apply~bottom line!. The experi-
ments which in our opinion are most relevant to this clas
fication include quantum oscillations of the low-T interlayer
resistivity ~and of other quantities! in high magnetic fields.41

Quantum oscillations can be viewed as a direct testimony
long-lived quasiparticles capable of propagating cohere
between the layers. Indeed, quantum oscillations were
served in two-dimensional organic superconductors,41,42 2H-
NbSe2 ~Ref. 43! and Sr2RuO4 ~Ref. 44!. Conversely, quan-
tum oscillations have never been reported for underdo
cuprates. The lack of coherence in thec-axis transport in
these materials indicates that the ground state of cupr
may be fundamentally different.

Signatures of coherent and incoherent behavior can
be recognized in the spectra of thec-axis conductivity. A
hallmark of a coherent response is the Drude peak see
1-4
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FIG. 3. Examples of the interplane transport for layered superconductors. Top panels show the out-of-plane optical conductivitsc(v),
and the bottom panels the corresponding in-plane scattering rate 1/tab(v). The observation of the Drude-like feature in the interplane opt
conductivity of the dichalcogenide 2H-NbSe2 ~top right panel! is consistent with magnetoresistance measurements that reveal evide
well-behaved quasiparticles. In contrast the conductivity of underdoped YBa2Cu3O6.6 material~top, left panel! gives no signs of coheren
response. Overdoped cuprates show the emergence of a Drude-like feature~top, middle panel! and also occupy an intermediate positio
between the two lines in Fig. 2. Experimental data: YBa2Cu3O6.6 ~Refs. 52 and 71!, YBa2Cu3O7 ~Refs. 13 and 14!, YBa2Cu3O6.95 ~Ref. 52!,
and 2H-NbSe2 ~Ref. 46!.
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s1(v) of metals. Notably, a similar feature has never be
found in the c-axis response of underdoped compoun
~forming the lower line in Fig. 2!. The electronic contribu-
tion to s1(v) in these materials is usually structurele
which is commonly associated with the incoherent~diffu-
sive! motion of charge carriers across the planes. Convers
many materials that belong to the upper line in Fig. 2 de
onstrate a familiar Drude-like behavior. This kind of beha
ior was found in Sr2RuO4 ~Ref. 45! and is also shown in ou
data46 for the interplane response of 2H-NbSe2 ~Fig. 3, top
right panel!. In both cases, the width of the peak decrease
low temperatures, which is characteristic of the respons
ordinary metals.47 As for the over-doped cuprates~located in
a cross-over region between the two lines in Fig. 2! their
conductivity is indicative of the formation of the Drude-lik
peak@see, for example,sc(v) for YBa2Cu3O7; Fig. 3, top
middle panel#, which is becoming more pronounced wi
increased carrier density.48

Analysis of the anisotropic carrier dynamics in seve
layered superconductors indicates that the degree of co
ence in the interplane transport may be related to the stre
of inelastic scattering within the conducting planes. The b
tom panels in Fig. 3 show the in-plane scattering rate~in-
verse lifetime! 1/tab(v) ~Ref. 49! for the layered compound
corresponding to the top three panels.50 In all these systems
1/tab(v)}v over an extended frequency interval~up to
3000 cm21)51. An important feature of the data displayed
Fig. 3 is that as doping is increased from underdop
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YBa2Cu3O6.6 to optimally doped YBa2Cu3O6.95 the absolute
values of 1/tab(v) decrease. A similar trend is observed
other cuprate families.52–55The shaded regions in Fig. 3 rep
resent a Landau-Fermi-liquid~LFL! regime, where the qua
siparticles are well defined, i.e., the magnitude of the scat
ing rate is smaller than the energy@1/t(v)<v#. In 2H-
NbSe2 1/tab(v,10K) is in the LFL regime over the entire
frequency interval displayed in Fig. 3. However, this is n
the case for the two cuprates discussed. We believe that t
differences in absolute values may have a profound effec
the interplane transport. In 2H-NbSe2, where the in-plane
quasiparticles are well defined, the interplane transpor
also coherent, and is characterized by a narrow Drude-
mode whose width decreases with temperature~Fig. 3, top
right panel!. On the other hand, in YBa2Cu3O6.6, which
lacks well-defined quasiparticles, the interplane transpor
incoherent, withs1(v) being dominated by optical phonon
~Fig. 3, top right panel!. As for the over-doped YBa2Cu3O7
~Fig. 3, bottom middle panel! the optical conductivity of this
compound is in between these two opposite limits. Figur
therefore supports the notion that long-lived in-plane qua
particles may be one of the necessary prerequisites for
herent out-of-plane transport.

V. GLOBAL TRENDS IN LAYERED SUPERCONDUCTORS

To summarize the experimental results reported in t
work, we wish to stress the following points:~i! two distinct
1-5
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patterns inlc2sdc correlation~Fig. 2! are indicative of a
dramatic difference (.102) in the energy scaleVC from
which the interlayer condensate is collected;~ii ! the pattern
with the typical energy scale of the order of meV is realiz
in the materials with the coherent transport between
planes, whereas the one with a strongly enhanced valu
VC is found in underdoped cuprate superconductors with
incoherent response;~iii ! overdoped cuprates reveal a cros
over between the two behaviors; and~iv! the coherence in
the interlayer transport correlates with the strength of ine
tic scattering within the conducting planes~Fig. 3!. These
results allow us to draw several conclusions regarding f
tures of the superconducting condensate in different laye
systems.

~i! The symmetry of the order parameter seems to be
related to trends seen in the c-axis condensate response
deed, the upper line in Fig. 2 is formed bys-wave transition-
metal dichalcogenides,p-wave Sr2RuO4, and organic
materials for which boths- and d-wave states have bee
proposed,41 while d-wave high-Tc materials form the lower
line and the crossover region between the lines.

~ii ! The electrodynamics of the systems on the top line
T!Tc is determined by the magnitude of the gap~and hence
by Tc), in general agreement with BCS theory. It is therefo
hardly surprising that the trend initiated by two-dimnesion
superconductors is also followed in one-dimensional orga
conductors, as well as by more conventional systems suc
Nb Josephson junctions, bulk Nb and Pb or amorph
aMo12xGex ~see Fig. 2!.

~iii ! While the pseudogap state has been shown to be
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sponsible for the anomalous superfluid response of the
derdoped cuprates,2,11 the characteristic pseudogap tempe
ture T* 590–350 K is still much lower than our estimate
VC for these materials~0.1–0.3 eV, i.e., 1000–3000 K!.

~iv! Unlike BCS superconductors, whereTc is determined
by 2D and therefore byVC , the critical temperatureTc in
cuprates correlates with neither 2D nor VC .

In conclusion, analyzing a large amount of experimen
data, we found two distinctly different patterns inlc2sdc
scaling in layered superconductors. Based on the unive
c-axis plot, we inferred a broad energy scaleVc relevant for
pair formation in underdoped cuprates. This result is con
tent with the idea that the superconducting transition in
cuprates is driven by a lowering of the electronic kine
energy.72 We argue that the appearance of such an ene
scale is fundamentally related to the incoherentc-axis trans-
port, which, on the other hand, may be related to poo
defined in-plane quasiparticles. A quantitative account of
distinct energy scales associated with the condensate
challenge for models attempting to solve the puzzle of
prate superconductivity.
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