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1 Fourier Transform Spectroscopy

Since its inception, most interferometer designs have incorporated some element of a
basic Michelson interferometer, shown schematically in Figure 1. Both beams have been
transmitted once and reflected once as they are divided at the beamsplitter, then reflected
at either the movable (M1) or fixed (M2) mirror, and finally recombined at the beam
splitter to proceed to the sample area and the detector.

Consider an incoming monochromatic plane wave with an average electric field am-
plitude Em, frequency ω and wave number ν̄ (which as units of cm−1):

ν̄ =
1

λ
=

ω

2πc
(1)

(where λ is in cm), incident on the beam splitter (where c is the speed of light)

�E = �Em cos(ωt− 2πν̄y). (2)

The beam from the mirror M2 after leaving the beam splitter in the direction of the
condensing unit may be written as

�E2 = rtc �Em cos [ωt− 2πν̄y1] (3)

where r is the reflectance (amplitude) of the beam splitter, t is the transmittance, and c
is a constant depending on the polarization. Similarly from the other mirror M1, at the
same point then we have

�E2 = rtc �Em cos [ωt− 2πν̄(y1 + x)] (4)

where x is the path difference. By superimposing (or superposition), the resultant E is
given by

�ER = �E1 + �E2 = 2rtc �Em cos(ωt− 2πy1) cos(πν̄x). (5)

The intensity (I) detected is the time average of E2. More strictly �E × �H (the Poynting

vector), but because | �E| ∝ | �H| this quantity can be described simply by just | �E|, ne-
glecting some constant of proportionality (which is not important). The intensity may
be written as:

I ∝ 4r2t2c2E2
m cos2(ωt− 2πy1ν̄) cos

2(πν̄x) (6)

where the time average of the first cosine term is just 1/2. Thus

I ∝ 2I(ν̄) cos2(πν̄x), (7)

where I(ν̄) is a constant that depends only upon ν̄. This expression may be simplified
to

I(x) = I(ν̄)[1 + cos(2πν̄x)] (8)

where I(x) is the interferogram form a monochromatic source. The interferogram for a
monochromatic source is shown in Fig. 2.
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Figure 1: A schematic view of a simple Michelson interferometer. The beam from the
source (typically a Hg arc lamp) is collimated and the wavefront is divided at the beam
splitter. One arm of the interferometer consists of a fixed mirror, while the other arm
contains a moveable mirror. The beams are recombined at the beam splitter after having
been reflected once and transmitted once, and then proceed to the sample area and
detector.

1.1 Polychromatic source

One of the advantages of the Fourier transform instrument is that many different wave
numbers may be looked at simultaneously — all the information is gathered at the
same time, and we sort it all out using a Fourier transform later. This decreases the
measurement time. As well, we can have much more “thruput”, i.e. higher intensities
and larger solid angles. An interferogram for a polychromatic source which consists of
frequencies from 0 → ν̄m is thus:

I(x) =

∫ ν̄m

0

I(ν̄)[1 + cos(2πν̄x)]dν̄

=

∫ ν̄m

0

I(ν̄)dν̄ +

∫ ν̄m

0

I(ν̄) cos(2πx)dx. (9)

When x = 0 then

I(0) = 2

∫ ν̄m

0

I(ν̄)dν̄

⇒ I(x) =
1

2
I(0) +

∫ ν̄m

0

I(ν̄) cos(2πν̄x)dν̄. (10)
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Figure 2: The interference pattern for a monochromatic source (such as a laser) as a
function of mirror displacement.

With many different wave lengths present, the interferogram resembles the diagram in
Fig. 3, which is symmetrical about x = 0 for an ideal interferogram.

When x = 0 the interference between all of the frequencies is constructive, resulting
in a central maxima. However, for x = ∞ the frequencies add both constructively and
destructively, so that the net contribution due to the integral in Eq. 10 is simply zero.
Thus,

I(∞) =
1

2
I(0) (11)

or more simply, I(0) = 2I(∞). This relationship is an important check of the instrument
alignment.

1.1.1 Percentage modulation

The percentage of modulation is defined as

[I(0)− I(∞)]

I(∞)
× 100 (12)

In a well-aligned instrument, the modulation is > 85%, and this value should be > 95%
in the low frequency region.
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Figure 3: The interference pattern for a polychromatic source about the zero path dif-
ference. This curve was generated simply by taking the normalized sum of a number of
cosine functions with various frequencies. Note that I(0) = 2I(∞).

1.2 Fourier transform

We have I(x) and now want I(ν̄), i.e.:

I(x)− I(∞) =

∫ ν̄m

0

I(ν̄) cos(2πν̄x)dν̄ (13)

letting ν̄m → ∞, we can write

I(ν̄) =

∫ ∞

0

[I(x)− I(∞)] cos(2πν̄x)dx. (14)

This procedure involves sampling each position, which can take a long time if the signal
is small and the number of frequencies being sampled is large.

1.3 Double-sided interferogram

If F (x) = I(x)− I(∞), then

F (x) =

∫ ν̄m

0

I(ν̄) cos(2πν̄x)dν̄ (15)

is symmetric about x = 0 since cosine is an even function. However, what if the inter-
ferogram behaves differently for −x and +x; i.e. you have not sampled at the true zero
path difference.
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Loss of symmetry can be represented by an additional phase factor:

F (x) =

∫ ν̄m

0

I(ν̄) cos [2πν̄x− φ] dν̄ (16)

=

∫ ν̄m

0

I(ν̄) cosφ cos(2πν̄x)dν̄

+

∫ ν̄m

0

I(ν̄) sinφ sin(2πν̄x)dν̄. (17)

What we would like to do is to find a method to be able to deal with the problem of not
being at the true zero path difference. For this, we use the complex Fourier transform.

1.3.1 Complex Fourier transform

The complex Fourier transform is defined in the following way:

g(ν̄) =

∫ ∞

−∞
f(x)e2πiν̄xdx

=

∫ ∞

−∞
f(x) cos(2πν̄x)dx+ i

∫ ∞

−∞
f(x) sin(2πν̄x)dx. (18)

The inverse transform is given by

f(x) =

∫ ∞

−∞
g(ν̄)e−2πiν̄xdν̄

=

∫ ∞

−∞
g(ν̄) cos(2πν̄x)dν̄ − i

∫ ∞

−∞
g(ν̄) sin(2πν̄x)dν̄. (19)

If f(x) is even, [f(x) = f(−x)] then

g(ν̄) =

∫ ∞

−∞
f(x) cos(2πν̄x)dx

= 2

∫ ∞

0

f(x) cos(2πν̄x)dx. (20)

This is referred to as a cosine transform. Likewise, if f(x) is odd, then

g(ν̄) = i

∫ ∞

−∞
f(x) sin(2πν̄x)dx

= 2i

∫ ∞

0

f(x) sin(2πν̄x)dx, (21)
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is a sine transform. Thus, we write

g(ν̄) = C(ν̄) + iS(ν̄). (22)

Returning to the problem of the interferogram, let F (x) ≡ f(x), [which is I(x)− I(∞)].
then

C(ν̄1) =

∫ ν̄m

0

I(ν̄) cosφ

[∫ ∞

−∞
cos(2πν̄x) cos(2πν̄1x)dx

]
dν̄

+

∫ ν̄m

0

I(ν̄) sinφ

[∫ ∞

−∞
sin(2πν̄x) sin(2πν̄1x)dx

]
dν̄. (23)

Now, ∫ ∞

−∞
cos(2πν̄x) cos(2πν̄1)x)dx =

1

2

∫ ∞

−∞

[
e2πi(ν̄+ν̄1)x + e2πi(ν̄−ν̄1)x

]
dx

=
1

2
[δ(ν̄ + ν̄1) + δ(ν̄ − ν̄1)] . (24)

where δ is the Dirac δ function. Note that the sine terms go to zero in the integral when
the limits are from −∞ → ∞. This is of the form

δ(ν̄ + L) =

∫ ∞

−∞
e2πi(ν̄+L)xdx (25)

In the expression for C(ν̄1) we have the product of a sine and a cosine in the interior
of the second integral. However, as the sine is a odd function, then its value over the
range −∞ → ∞ will be zero. Thus, we can write C(ν̄1) as

C(ν̄1) =
1

2

∫ ν̄m

0

I(ν̄) cosφ [δ(ν̄ + ν̄1) + δ(ν̄ − ν̄1)] dν̄

⇒ C(ν̄1) =
I(ν̄1
2

cosφ; I(−ν̄1) = 0. (26)

since I(ν̄) = 0 for all ν̄ > ν̄m and for all ν̄ < 0. Similarly,

S(ν̄1) =
I(ν̄1)

2
sinφ. (27)

Thus

|g(ν̄1)| =
[
C2(ν̄1) + S2(ν̄1)

]1/2
=

1

2
I(ν̄1)(sin

2 φ+ cos2 φ)1/2

=
I(ν̄1)

2
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so that finally

I(ν̄1) = 2|g(ν̄1)|
= 2

[
C2(ν̄1) + S2(ν̄1)

]1/2
(28)

Thus, the phase error introduced by not sampling symmetrically and the asymmetry in
the interferometer is eliminated by taking the the two-sided interferogram and performing
a complex fast Fourier transform.

Disadvantages: a factor of two in the data collection time, because the interferogram
must be two sided.

1.4 Finite integration limits

In practice the interferogram is from −xmax to +xmax, not −∞ to ∞. To examine the
effect, consider the monochromatic wave in an ideal interferometer. From Eqs. 6 or 13
(neglecting the constant offset) we get

F (x) = I(ν̄1) cos(2πν̄1x) (29)

where F (x) is just the structure. We can do the finite transform over the finite range,
which may be written as: ∫ ∞

−∞
I(ν̄1) cos(2πν̄1x)e

2πiν̄xrect(x)dx (30)

which is to say that instead of putting limits on the integral, we use the rectangular
function defined by:

rect(x) =

{
1 |x| < xmax

0 |x| > xmax

1.4.1 The convolution theorem

The Fourier transform of the product of two functions, i.e. f(x) and g(x) is the con-
volution of their individual Fourier transforms F (y) and G(y), where the convolution is
defined by

F ∗G =

∫ ∞

−∞
G(u)F (y − u)du (31)
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Figure 4: The function sinc(θ) for the rectangular aperture function.

The Fourier transform of rect(x) is then∫ ∞

−∞
rect(x)e2πiν̄xdx =

∫ xm

−xm

e2πiν̄xdx

=

∫ xm

−xm

[cos(2πν̄x) + i sin(2πν̄x)] dx

=

[
sin(2πν̄x)

2πν̄
− i

cos(2πν̄x)

2πν̄

]xm

−xm

=
2 sin(2πν̄xm)

2πν̄

= 2xm
sin(2πν̄xm)

2πν̄xm

= 2xmsinc(2πν̄xm). (32)

This function is shown in Fig. 4. The Fourier transform of the structure F (x) due to the
monochromatic source is:∫ ∞

−∞
I(ν̄1) cos(2πν̄1x)e

2πiν̄xdx =
1

2

∫ ∞

−∞
I(ν̄1)

[
e2πiν̄x + e−2πiν̄1x

]
e2πiν̄1xdx

=
1

2

∫ ∞

−∞
I(ν̄1)

[
e2πi(ν̄+ν̄1)x + e2πi(ν̄−ν̄1)x

]
dx

=
1

2
I(ν̄1) [δ(ν̄ + ν̄1) + δ(ν̄ − ν̄1)] (33)

This function is simply two delta functions located at ±ν̄1. We usually discard the the
negative frequency as it is unphysical, thus we are simply left with the frequency ν̄1 of
the monochromatic source.
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Figure 5: The convolution of the delta function from a single monochromatic source at
±ν̄1 and a rectangular aperture function. While the response from the negative side
extends into the positive region, it is usually very small and it is ignored. Note that
the Fourier transform of the rectangular aperture function is called the instrumental line
shape (ILS).

The convolution theorem of two transforms is then:∫ ∞

−∞
2xmsinc(2πuxm)

1

2
I(ν̄) [δ(ν̄ + ν̄1 + u) + δ(ν̄ − ν̄1 + u)] du

= I(ν̄1)xm {sinc[2π(ν̄ + ν̄1)xm] + sinc[2π(ν̄ − ν̄1)xm]} (34)

which is shown in Figure 5.
The total from the negative side extends into the positive region, but is usually very

small and ignored. Thus:

I(ν̄) = I(ν̄1)xmsinc[2π(ν̄ − ν̄1)xm]. (35)

The function 2xmsinc(2πν̄xm) is called the instrumental line shape (ILS) or the spec-
tral window.

I(ν̄) = I(ν̄1) ∗ ILS. (36)

1.4.2 Resolution

Clearly, the ILS has a given width for a monochromatic line. Jacquinot defined the
resolution as the distance between the first two zeros on either side of the peak, which is
shown in Figure 6 for a sinc function.

Thus,

δν̄ =
1

xm

. (37)
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Figure 6: The first two zeros of a sinc function, which occur at ν̄1 ± 1/2xm.

(Note that this delta function is not the Dirac delta function.) Thus, the resolution
depends on the length of the scan, i.e. if the mirror scan is 5 cm (which is xm/2), then
xm = 10 cm, ⇒ δν̄ = 0.1 cm−1.

1.5 Apodisation

The “side lobes” or “feet” of the sinc function drop off 22% below zero, which is clearly
unacceptable. The problem is in choosing the aperture. The sharp edges produced by
the rectangular function introduce this ringing in the spectrum. Thus, what we need is
a gentler aperture function. The imposition of such a function is called apodisation. The
most common apodisation function is the triangular aperture, which is defined as:

tri(x) =

{
0 |x| ≥ xm

1− |x|/xm |x| < xm

However, there are still discontinuities in tri(x) at x = 0 and at x = ±xm. The Fourier
transform of tri(x) is

F.T.[tri(x)] =

∫ ∞

−∞
tri(x)e2πiν̄xdx

=

∫ xm

−xm

(
1− |x|

xm

)
e2πiν̄xdx

=

∫ xm

−xm

cos(2πν̄x)dx+ i

∫ xm

−xm

sin(2πν̄x)dx

− 1

xm

∫ xm

−xm

|x| cos(2πν̄x)dx− i

xm

∫ xm

−xm

|x| sin(2πν̄x)dx (38)
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since sin(2πν̄x) and |x| sin(2πν̄x) are odd functions, then the integrals are identically
zero, and thus Eq. 38 reduces to two terms:

=
2 sin(2πν̄xm)

2πν̄
− 2

xm

∫ xm

0

x cos(2πν̄x)dx

From a general calculus theorem, recall that

∫ b

a

f(x)g(x)dx =

[
f(x)

∫ x

0

g(y)dy

]b
a

−
∫ b

a

∂f(x)

∂x

[∫ x

0

g(y)dy

]
dx

then Eq. 38 becomes

=
2 sin(2πν̄xm)

2πν̄
− 2

xm

{[
x sin(2πν̄x)

2πν̄

]xm

0

−
∫ xm

0

sin(2πν̄x)

2πν̄
dx

}

=
2 sin(2πν̄xm)

2πν̄
− 2

xm

{
xm sin(2πν̄xm)

2πν̄
+

[
cos(2πν̄x)

(2πν̄)2

]xm

0

}

= − 2

xm

[
cos(2πν̄xm)− 1

(2πν̄)2

]

=
2

xm

[
2 sin2(πν̄xm)

(2πν̄)2

]

=
xm sin2(πν̄xm)

(πν̄xm)2

= xmsinc
2(πν̄xm) (39)

The Fourier transform of tri(x) is shown in Fig. 7. Notice the absence of negative side
lobes, the small size of the first positive lobes and the increase in the line width. Once
again, a monochromatic line ν̄ would give a spectrum given by

I(ν̄) = I(ν̄1) ∗ ILS
= I(ν̄1)xmsinc

2(πν̄xm). (40)

1.5.1 Resolution revisited

If we used the previous definition of resolution, the we would now have

δν̄ =
2

xm

However, one normally adopts the Rayleigh criterion when attempting to resolve two close
lines, which is obtained when when the first zero of one line falls upon the maximum of
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Figure 7: A comparison of the Fourier transforms of the rectangular and triangular
aperture functions, sinc(2θ) and sinc2(θ) respectively. Note that the Fourier transform
of the triangular aperture function has much smaller side lobes, but is broader than the
Fourier transform of the rectangular aperture.

the other line. When this condition is achieved, the dip between the two lines represents
22% of their maxima. (It should be noted that this assumes that the lines are of equal
widths and strengths.) Thus, once again we have that the resolution is given by

δν̄ =
1

xm
.

There are many different kinds of apodisation functions, having a varying widths and
side lobes. A function that has commonly been used is the Happ-Genzel function

W (x) = 0.54 + 0.46 cos

(
πx

xm

)
. (41)

The Fourier transform of the Happ-Genzel function is

F.T.[W (x)] =
sin(2πν̄xm)

2π

[
1.08

ν̄
+

0.46

xm/w − ν̄
− 0.46

xm/2 + ν̄

]
. (42)

A comparison of the Triangular and Happ-Genzel apodisation functions is shown in
Figure 8. While the full width at half maximum for the two functions is about the same,
the side lobes are almost totally absent in the Happ-Genzel function. In general, we will
be using either three or four-term Blackwood-Harris apodisation functions, which have
slightly narrower line shapes and very small side lobes.

14



Figure 8: A comparison of the Fourier transforms of the Triangular and Happ-Genzel
aperture functions. Note that the side lobes of the Happ-Genzel function are much
smaller than those of the triangular apodisation function.

1.6 Sampling interval

The data has to bee digitized for the Cooley-Tukey fast Fourier transform algorithm in
equal increments of path difference Δx. In many early instruments, the data was collected
by a “step and integrate” method. Later instruments, such as the Bruker IFS113, adopted
a “rapid scan” technique where the infrared radiation is modulated (typically in the kHz
frequency range), and many interferograms are taken and averaged. This technique is
generally superior to the step-and-integrate method.

The disadvantage of digitizing data in equal increments is the loss of symmetry in the
interferogram if the zero-path difference is not sampled and the subsequent inability to
detect spurious noise.

1.6.1 The Shah function

The sampled interferogram Fs(x) is related to the complete interferogram Fc(x) = [I(x)−
I(∞)]c by:

Fs(x) =�
( x

Δx

)
Fc(x) (43)

where � (x) is a “combing” function, or Shah function defined by

� (x) =

∞∑
−∞

δ(x− n) (44)

where δ(x−n) is a Dirac delta function, and n is an integer. Thus, from Eq. 44 the Shah
function allows only non-zero value for integers (both positive and negative). Thus, in
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Eq. 43 the Shah function will allow non-zero value for

x = 0,±Δx,±2Δx, · · · ,±nΔx, · · ·
Before proceeding, consider some of the properties of the Shah function. It is periodic

(since the limits run from −∞ to ∞)

� (x+m) =� (x). (45)

We may also derive a scaling rule for the Shah function. Suppose one has

� (ax) =

∞∑
n=−∞

δ(ax− n) (46)

we would like to change the variable from ax − n to x − n/a. If we consider the fitting
property of the delta function, then∫ ∞

−∞
δ
(
x− n

a

)
f(x)dx = f

(n
a

)
(47)

and ∫ ∞

−∞
δ(ax− n)f(x)dx =

1

|a|
∫ ∞

−∞
δ(y)f

(
y + n

a

)
dy

=
1

|a|f
(n
a

)
; y = ax− n. (48)

Comparing Eqs. 47 and 48 one has

δ(ax− n) =
1

|a|δ
(
x− n

a

)
(49)

thus

� (ax) =
1

|a|
∞∑

n=−∞
δ
[
x−

(n
a

)]
. (50)

We need to know what the effect of the Fourier transform is upon the Shah function.

F.T.[� (ax)] =
1

|a|
∞∑

n=−∞

∫ ∞

−∞
δ
(
x− n

a

)
e2πiν̄xdx (51)

using the sifting property of the δ function gives that

F.T.[� (ax)] =
1

|a|
∞∑

n=−∞
e2πiν̄n/a (52)

=
1

|a|

{ ∞∑
−∞

cos
[
2π

( ν̄
a

)
n
]
+ i

∞∑
−∞

sin
[
2π

( ν̄
a

)
n
]}

. (53)
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In the cosine summation, whenever ν̄/a 	= an integer value, the cosines will add randomly
to zero. However, when ν̄/a = an integer, then we get an infinite number of unities adding
together. This is the definition of a δ function. Therefore,

F.T.[� (ax)] =
1

|a|
∞∑

n=−∞
δ
[( ν̄

a

)
− n

]
(54)

and

F.T.[� (ax)] =
1

|a| �
( ν̄
a

)
. (55)

The Fourier transform of the Shah function is another Shah function that is reciprocal
to the first.

Returning to the spectrum

Is(ν̄) = F.T. [Fs(x)] (56)

and
Ic(ν̄) = F.T. [Fc(x)] (57)

then

Is(ν̄) = F.T.
[
�
( x

Δx

)
Fc(x)

]
[from (48)] (58)

= F.T.
[
�
( x

Δx

)]
∗ Ic(ν̄) (59)

= Δx � (ν̄Δx) ∗ Ic(ν̄) [from (61)] (60)

= Δx
∞∑

n=−∞
δ(ν̄Δx− n) ∗ Ic(ν̄) [from (49)] (61)

=
∞∑

n=−∞
δ
(
ν̄ − n

Δx

)
∗ Ic(ν̄) [from (55)] (62)

=

∞∑
n=−∞

Ic

(
ν̄ − n

Δx

)
(63)

so that we finally arrive at

Is(ν̄) =
∞∑

n=−∞
Ic(ν̄ − nΔν̄) (64)

where

Δν̄ =
1

Δx
. (65)
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Table 1: The minimum sampling interval required to prevent aliasing for the wave number
range from 0 → ν̄max in a Michelson interferometer.

ν̄max (cm−1) Δx (μm)

2000 2.5
1000 5
500 10
250 20
125 40
62.5 80

Thus, when transforming the sampled interferogram, we get an infinite number of com-
plete spectra, each starting at nΔν̄. The transformed spectra are actually the sum of the
spectra for the positive frequencies and those of the negative frequencies from an adja-
cent spectra. Incorrect choices of a sampling frequency can lead to large contributions to
distortions of the spectra. This is called “aliasing” or “false energies”. In order to avoid
this, one must make Δν̄ large enough so that the maximum frequency contribution of
the positive ν̄ spectrum does not overlap with the negative ν̄ spectrum. This may be
accomplished by requiring that

Δν̄ ≥ 2ν̄max (66)

or

Δx ≤ 1

2ν̄max

. (67)

In term of wave number regions, this results in the following conditions: Another way
of seeing the condition that Δx ≤ 1/2ν̄max is that Δx ≤ λmin/2, which means that one
must sample at least every twice in every cycle of the smallest wave length of radiation in
the interferogram (this is just the Nyquist frequency from information theory). Having
chosen ν̄max, and found the appropriate Δx, one must make certain that there is no
radiation with ν̄ > ν̄max by the use of optical filters. The theory and results ere are
the same as found in x-ray and electron diffraction in solids, where atoms are discrete,
regularly spaced points.

1.7 Felgett advantage (“Multiplex”)

Felgett submitted his dissertation to Cambridge in 1951, and was the first person to
transform interferograms numerically. Shortly after this, Jacquinot stated his throughput
advantage. The Felgett advantage is realized in the following way — suppose one is
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Figure 9: An arbitrary spectrum over an interval ν̄1 and ν̄2 (Δν̄) to be measured with
resolution δν̄.

interested in measuring a spectrum of width Δν̄ between ν̄1 and ν̄2 with resolution δν̄,
as shown in Fig. 9. The number of “elements”, M is then given by:

M =
Δν̄

δν̄
. (68)

If a grating or a prism instrument is being used, then each small band of width δν̄, or
element, is observed individually and for a time T/M , there T is the observed time for
the entire spectrum.

In the infrared region the noise is due mainly to thermal and current contributions;
it is independent of signal level. This is not the case in the visible region, where the
uncertainty comes primarily from photon noise (the noise from the random counting of
photons, which is simply proportion to the square root of the number of photons). In
the infrared region, the noise, N , is then proportional to

√
T/M in an element of width

δν̄. It follows that: (
S

N

)
GRT

∝ (T/M)√
T/M

=
√
T/M (69)

For an interferometer, however, the signal from all of the elements is received at the same
time, thus the signal in an element is ∝ T . Again, if the noise is random and independent
of signal level then the noise ∝ √

T . Thus, the signal to noise in an interferometer is:(
S

N

)
INT

∝ T√
T

=
√
T (70)

The Felgett advantage of an interferometer over a grating instrument is then:

(S/N)INT

(S/N)GRT

=

√
T√

T/M
=

√
M. (71)
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For instance, for Δν̄ from 200 to 1000 cm−1 with a resolution of 1 cm−1, a S/N advantage
of

√
800 ∼ 28 is realized; if a run takes 1 hour with the interferometer, an equivalent run

on a grating instrument would have taken 800 hours! However, it should be noted that
this advantage is lost in the visible region.

1.8 Relating (S/N) in the interferogram to (S/N) in the spec-
trum

Assume that the interferometer gives an interferogram that is composed of a noiseless
interferogram plus random detector noise; the noise will be evident in the tails of the
interferogram where the signal modulations are small. The RMS noise is given by:

σN =

√
N(x)2 (72)

which can be estimated by looking at the interferogram. The (S/N)IFG can be defined
(and measured) as (

S

N

)
IFG

=
I(0)− I(∞)

σN
(73)

How will this transform into (S/N) of the interferometer spectrum where(
S

N

)
SPT

∝ T 1/2 (74)

in an element of width δν̄. However, the interferogram contains all M elements simulta-
neously, thus the signal is proportional to MT and the noise is proportional to

√
MT .

Thus, the signal-to-noise in the interferogram is(
S

N

)
IFG

∝ MT√
MT

=
√
MT (75)

Thus, the (S/N) in the spectrum divided by the (S/N) in the interferogram is(
S

N

)
SPT

/

(
S

N

)
IFG

=
T 1/2

(MT )1/2
=

1

M1/2

=

√
δν̄

Δν̄
(76)

with a low-pass filter, Δν̄ = ν̄max, thus√
δν̄

Δν̄
=

√
Resolution

ν̄max

. (77)
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If ν̄max = 1000 cm−1 with a resolution of δν̄ = 10 cm−1, then(
S

N

)
SPT

/

(
S

N

)
IFG

=

√
10

1000
=

1

10

thus, 1% noise in the interferogram yields 10% noise in the spectrum. For the measure-
ment of a reasonably narrow vibration in the terahertz range, if ν̄max = 60 cm−1 with a
resolution of δν̄ = 0.1 cm−1, then(

S

N

)
SPT

/

(
S

N

)
IFG

=

√
1

600
=

1

25

if 10% noise is acceptable in the spectrum, then we need a signal-to-noise of 250 for the
interferogram.

2 Instrumentation

2.1 Self-supporting dielectric beam splitters

Most beam splitters are mylar (polyethylene teraphalate) of various thicknesses; 3μm
(12 G), 6μm (25 G), 12μm (50 G), up to 100μm (400 G). Other beamsplitter materials,
such as polycarbonate my also be used, in addition to wire-grid beam splitters.

The transmitted radiation through the interferometer depends on the product of the
reflected intensity R0, and the transmitted intensity T0. The intensity from each beam
reaching the detector, neglecting the modulation from the optical path difference in the
two arms of the interferometer is simply R0T0, yielding a total of 2R0T0. FromR0+T0 = 1,
then one can optimize the signal reaching the detector, and find a maximum efficiency
when R0 = T0 = 0.5 (one half of the signal returns to the source). It should be noted
that some instruments such as the lamellar grating interferometer return nothing and are
100 % efficient. We will define the relative efficiency (RE) of our beam splitter as:

R.E. =
2R0T0

(2R0T0)ideal
= 4R0T0 (78)

Unfortunately, the relative efficiency is often considerably less than unity due to R0 < 0.5,
R0 and T0 depend on the polarization, and the relative efficiency depends on frequency.

2.1.1 Efficiency of a dielectric beamsplitter with frequency

The variation of efficiency with ν̄ is known as “interference fringes”, “channeled spectra”,
“dielectric resonances”, of “Fabry-Perot fringes”. Consider the plane waves incident on
a non-absorbing, parallel-sided sheet of dielectric of thickness d, with amplitude a. We
define the following amplitude coefficients:
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Figure 10: The reflected and transmitted rays at the front and back surfaces of a thin
non-absorbing dielectric film of thickness d and refractive index n in air.

t transmission from air to dielectric
t′ transmission from dielectric to air
r reflection at the dielectric to air interface
r′ reflection at the air to dielectric interface

This is shown schematically in Fig. 10. The transmitted amplitude will therefore be given
by:

Aeiθ = att′ + att′r2eiδ + att′r4ei2δ + · · · , (79)

where δ is the change in the phase between two adjacent emerging rays. From the Stokes
relation

tt′ = 1− r2 (80)

this expression can be rewritten as

Aeiθ = a(1− r2)(1 + reiδ + r4ei2δ + · · · ) (81)

which sums to

Aeiθ =
a(1− r2)

1− r2eiδ
. (82)

The transmitted intensity is T0 = A2 = AeiθAe−iθ. Thus

T0 =
a2(1− r2)2

(1− r2eiδ)(1− r2e−iδ)

=
a2(1− r2)2

1 + r4 − r2(eiδ + e−iδ)

=
(1− r2)2

1 + [2r/(1− r2)]2 sin2(δ/2)
(83)
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Figure 11: Upper panel: the variation of R0 (solid line) and T0 (dotted line) with the
phase difference δ for r = 0.41 (R = 0.16); note that R0 + T0 = 1. Lower panel: the
variation of R0T0 with δ.

Using the trigonometric identity cos δ = 1−2 sin2(δ/2) and R = rr∗, then T0 and R0 can
be written as:

T0 =
(1− R)2

1 +R2 − 2R cos δ
(84)

and

R0 =
2R2(1− cos δ)

1 +R2 − 2R cos δ
. (85)

The variation of R0 and T0 with δ is shown in Fig. 13.
This is the familiar Fabry-Perot fringe pattern, normally called channeled spectra

when one encounters it due to a filter or a window, etc., with parallel faces somewhere
in the optical path. One chooses the thickness of the beamsplitter material so that the
wavenumber region of interest is in the first lobe.

2.1.2 Relating δ to ν̄

For an angle of incidence θ = 45◦, the optical path difference between emerging rays in a
film of thickness d with refractive index n is 2ny−z = 2ny−2x cos(45◦); here x = d tanφ
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Figure 12: The optical path difference between two rays emerging from the back of a
thin dielectric film of thickness d and refractive index n.

and y = d/ cosφ, as illustrated in Fig. 12 . Therefore, the optical path difference may be
written as 2nd/ cosφ − 2d tanφ cos(45◦). Given that the film is in air with an index of
n = 1, then from Snell’s law n sinφ = sin θ; the optical path distance (OPD) is then

OPD = 2nd

(
1

cosφ
− sin2 φ

cosφ

)
(86)

= 2nd cosφ. (87)

This is similar to a previously obtained result, which I may not have actually talked
about yet. Expressing φ in terms of the refractive index n,

cos φ =

√
1− sin2 φ =

√
1− sin2(45◦)

n2
=

√
1− 1

2n2

For a maximum in the beam splitter efficiency, we have that

δ

2
=

(
n− 1

2

)
π, n = 1, 2, 3, · · · (88)

which can be related to the frequency by 2π/λ ·OPD/2 = (n− 1/2)π, which gives

ν̄ =

(
n− 1

2

)
2nd

(
1− 1

2n2

)1/2
(89)

for a maximum, and

ν̄ =
n

2nd
(
1− 1

2n2

)1/2
(90)
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for a zero. When the angle of incidence is normal to the surface, i.e. θ = φ = 90◦, then
one obtains channeled spectra whose separation Δν̄ is given by

Δν̄ =
1

2nd
. (91)

Figure 13: The beamsplitter efficiency versus frequency in a standard Michelson spec-
trometer (θi = 45◦) of 3.5, 6, 12 and 23 μmMylar beam splitters as a function of frequency
for s-polarized radiation.

2.2 Polarization in Mylar beam splitters

Radiation polarized with its electric field parallel to the plane of incidence is denoted by
p, while radiation polarized with its electric field perpendicular to the plane of incidence
is denoted by s. For any non-zero angle of incidence at the beamsplitter, the Fresnel
equations for the reflectance for p- and s-polarized radiation have different forms

Rp =
tan2(θi − θt)

tan2(θi + θt)
(92)

and

Rs =
sin2(θi − θt)

sin2(θi + θt)
, (93)

where θi and θt are the angles of incidence and transmission, respectively, and are related
by n = sin θt/ sin θt. The refractive index of PET is n  1.6 and the index of absorption
k ≈ 0 over most of the far-infrared region. For an angle of incidence of θi = 45◦ found in
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Figure 14: The variation of R0 for s- and p-polarized radiation as a function of the
refractive index for 45◦ (solid line), 30◦ (long dashed line) and 15◦ (short dashed line)
angles of incidence. The values of the refractive index for both Mylar (PET) and Si are
indicated. Note that for a high-index material such as Si, not only are the values for R0

closer to the ideal value, but the difference between R0s and R0p is much smaller at a
reduced angle of incidence (15◦) than in a conventional Michelson spectrometer (45◦).

a conventional Michelson interferometer, then Rp = 0.133, or about 1%, and Rs = 0.155,
or about 11%, for the p and s polarizations, respectively. At the maximum in the
beamsplitter response

T0 =

(
1− R

1 +R

)2

. (94)

In the p polarization T0p = 0.9482 and R0p = 1 − T0p = 0.0518; R0pT0p = 0.0491. We
define the relative efficiency of a beamsplitter as 4T0R0 ≈ 0.197 or about 20% in this
polarization. Similarly, for the s polarization T0s = 0.63 and R0s = 0.37, resulting in a
relative efficiency of 93%. Note that the relative efficiency of a beamsplitter will depend
on its refractive index, as well as the angle of incidence. The beamsplitter efficiencies are
listed below for both Mylar (n = 1.6) and silicon (n = 3.4) for θi = 45◦ and 30◦, and
illustrated in Fig. 14.
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θi = 45◦ θi = 30◦

Material Polarization R0 T0 4R0T0 R0 T0 4R0T0

Mylar p 0.052 0.95 0.20 0.13 0.87 0.45
s 0.37 0.63 0.93 0.26 0.74 0.77

None 0.21 0.79 0.66 0.20 0.80 0.64
Si p 0.51 0.49 1.00 0.63 0.37 0.93

s 0.83 0.17 0.56 0.77 0.23 0.71
None 0.67 0.33 0.88 0.70 0.30 0.84
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A Optical Conductivity

The relationship between the complex dielectric constant ε̃ = ε1 + iε2 and the complex
optical conductivity σ̃ = σ1 + iσ2 is given by the following (SI) expression:

σ̃ = iε0ω(1− ε̃) (95)

where ε0 = 8.854× 10−12 C2/Nm2 is the permittivity of free space. The real part of the
optical conductivity is then

σ1 = ε0 ωε2. (96)

However, we want the units for the conductivity to be in Ω−1cm−1. Examining the units
of ε0, and recalling that the units of resistance are Ω = m2kg/s C2, we can write

C2

Nm2
=

C2 s2

kgm3

=

[
s C2

kgm2

]
s

m

= Ω−1
( s

m

)
.

To remove the remaining (s/m), we multiply ε0 by the speed of light c (m/s), so the units
are now simply in Ω−1,

ε0c = (8.854× 10−12 Ω−1 s/m)(2.997× 108 m/s)

= 0.002654 Ω−1.

The fact that we are using an angular frequency adds a further factor of 2π, so that the
final expression for the conductivity is then σ1(ω) = (2πε0c)ωε2. When the frequency is
expressed in wave numbers (cm−1), then σ1(ω) = (2πε0c)ωε2 has units of Ω−1cm−1; this
can now be written as σ1(ω) = 0.016678ωε2 (Ω

−1cm−1), or

σ1(ω) =
ωε2
59.96

 ωε2
60

(Ω−1cm−1). (97)

As previously mentioned, ω is in cm−1. This is the origin of the mysterious “1/60” term;
it arises solely from a discussion of the units of the conductivity.
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